1700921202
1608年,一个荷兰的眼镜店老板偶然间发现用两块前后放置的镜片可以看清远处的物体,进而造出了人类历史上的第一架望远镜。这个消息传到了意大利,引起了大科学家伽利略的浓厚兴趣。1609年,伽利略造出了一个质量更好的望远镜,能把远处的物体放大三十多倍。他把这个望远镜放在了一个塔楼的顶层,并邀请威尼斯的一些达官贵人前来观看。这个新奇的玩意儿让所有访客都大呼过瘾,也给伽利略带来了事业上的进步。不久,佛罗伦萨公国的大公就向他发出邀请,高薪聘请他担任佛罗伦萨的首席宫廷科学家。伽利略接受了邀请,这让很多威尼斯人大为不满。比如,有一个叫克莱默尼尼的哲学家,曾经向伽利略借过一笔钱,当他得知伽利略要离开威尼斯时,立刻大骂伽利略是个叛徒,然后就耍赖不还钱了。
1700921203
1700921204
1700921205
1700921206
1700921207
如果仅仅是改进了望远镜,在科学上并不会产生多大的影响。但伽利略接下来又做了一件事,这件事标志着现代天文学,甚至是整个现代科学的诞生。可能小朋友们会好奇,伽利略到底做了什么事,能有这么厉害?他把望远镜指向了太空。
1700921208
1700921209
小朋友们应该都听过阿里巴巴和四十大盗的故事。阿里巴巴跟踪一伙强盗,来到了一个山洞前。在说出“芝麻开门”的咒语后,他打开山洞的大门,发现里面藏有数不清的财宝。阿里巴巴第一次发现财宝的心情,应该就和伽利略第一次用望远镜看太空的心情差不多。望远镜为人类打开了一扇通往新世界的大门。伽利略用它看到了很多前所未见的景象,例如太阳的黑子、月球的陨石坑、木星的四颗卫星和土星的巨大光环。此外,他还发现了一个至关重要的现象,强烈地支持了哥白尼的日心说。这个现象叫金星盈亏。
1700921210
1700921211
什么是金星盈亏呢?给大家看一张图,你们就明白了。我们都知道,月球是有盈亏的。为什么它会有盈亏呢?因为月球本身不发光,只能反射太阳光。由于月球一直都绕着地球旋转,它既可以跑到地球和太阳中间,也可以跑到地球背后。农历初一的时候,月球会跑到地球和太阳中间,这时月球会把后面射来的太阳光挡住,我们就看不见它,这就是“亏”,也叫新月;而农历十五的时候,月球会跑到地球背后,这时它可以完全地反射太阳光,我们就能看到一轮最圆的明月,这就是“盈”,也叫满月。类似地,如果金星一直处于地球和太阳中间,就会挡住太阳光,形成类似于新月的状态。反过来,如果它能像图中所示的那样跑到太阳背后,就可以完全地反射太阳光,形成类似于满月的状态。
1700921212
1700921213
小朋友们仔细看看地心说和日心说的那两张图就会知道,这两种理论有一个最大的区别:在地心说中,金星永远处于地球和太阳中间;而在日心说中,金星可以跑到太阳背后。因此,能不能看到金星也有“盈”的状态,是判断哪个理论正确的关键。伽利略正是用望远镜看到了金星有“盈”的状态,才敢断定哥白尼的日心说是对的。
1700921214
1700921215
日心说取代地心说的过程告诉我们,现代科学本质上是实验和观测的科学。只有通过实验和观测,才能判断一个科学理论是否正确。
1700921216
1700921217
1700921218
1700921219
1700921220
当然,今天的科学家已经知道,日心说也是错的。宇宙的疆域,其实远比古人最疯狂的想象还要辽阔。那他们是怎么知道的呢?答案依然是通过天文观测。可能有些聪明的小朋友要问了:“你满口都是天文观测。到底有什么了不起的观测能让我们认识整个宇宙啊?”答案其实很简单,那就是我们最熟悉的距离测量。
1700921221
1700921222
距离测量是最基本的物理学实验。在日常生活中,人们一般都是直接拿尺子来量。比如说,上一讲提到的诺伍德,就是用尺子一点一点地量出从伦敦到约克的距离,进而推算出了地球的周长。但是在天文学中就没法用尺子量了,因为我们离那些天体的距离实在太远了。那该怎么办呢?聪明的天文学家想出了不少好办法。下面我就给大家讲讲其中最重要的两种方法。
1700921223
1700921224
第一种方法叫作三角视差。为了理解它,咱们可以做个小实验。伸出一只手指,放在靠近鼻子的地方,然后分别闭上左眼、右眼,只用一只眼睛来观察它。你会发现手指相对于背景的位置发生了偏移。手指明明没动,为什么它的位置会改变呢?这是因为你前后两次看它的位置发生了改变。这个由于观察者自身位置改变而导致被观察物体位置偏移的现象,就是视差。现在,把手指放在比较远的地方,重复这个实验,你会发现手指的位置偏移变小了。这说明被观察物体的视差越小,它离我们的距离就越远。
1700921225
1700921226
1700921227
1700921228
1700921229
有了视差的概念,我们就可以用几何学的方法来测量遥远天体的距离了。下面这张图就是用三角视差法测量距离的原理图。我们都知道,地球每年会绕太阳一圈。如果地球在春分的时候运动到图中的A点,那么半年以后,也就是秋分的时候,它会到达离A点最远的B点。现在把A点和B点当成是一个人的左眼和右眼,分别从这两个地方来观察一颗离我们不太远的星星,就会发现这颗星星在遥远天幕上的位置发生了变化。从B点看来,相对于在A点,星星的位置会向左移动。这个向左的偏移量可以转化为一个角度,叫作星星的周年视差角。科学家已经测出,地球到太阳的平均距离约为1.5亿公里,相当于地球周长的3750倍。我们通常把这个日地距离称为1个天文单位。用1个天文单位除以星星的周年视差角,就可以算出我们到这颗星星的距离。
1700921230
1700921231
不过这个三角视差法是有局限性的:它无法测量与我们相距太远的星星。这是因为它们所对应的“周年视差”角度实在太小,根本测不出来。所以对于特别遥远的天体,天文学家一般采用第二种方法测量,它被称为标准烛光。
1700921232
1700921233
1700921234
1700921235
1700921236
我们都有这样的生活经验:一根点燃的蜡烛,要是放在近的地方,看起来就比较亮;要是放在远的地方,看起来就比较暗。这是为什么呢?下图就解释了其中的原理。爱因斯坦告诉我们,光是由一个个被称为光子的微小颗粒组成的。只要蜡烛的绝对亮度是固定的,则它在单位时间内发出的光子总数也是固定的。这些光子会呈球形均匀地向外扩散,随着扩散距离的增大,这个球的面积也会越来越大。因为整个球面上的光子都是由蜡烛发出的,其总数会一直保持不变,所以单位面积上的光子数目会相应减少。换句话说,在远处,我们眼睛能接收到的单位面积的光子数会减少,这也会使光的可视强度变小,所以我们才会觉得蜡烛变暗了。更重要的是,蜡烛的可视亮度与我们和蜡烛距离的平方成反比。比如说,如果距离扩大4倍,蜡烛的可视亮度就会减小到原来的1/16。
1700921237
1700921238
1700921239
1700921240
1700921241
所以蜡烛还有一个意想不到的用途:用来测量距离。只要能确定一根蜡烛在一个距离已知的地方的可视亮度,把它拿到更远的地方后,就可以通过测量新的可视亮度来计算我们到那里的距离。现在让我们开一下脑洞。我们要在天上找一种特殊的天体,它同时满足以下两个条件:1、特别亮,即使相距非常遥远也能看到;2、光学性质稳定,其绝对亮度固定不变。在这两个条件中,第二点更难满足。但只要能找到这样的天体,我们就可以把它当作蜡烛来测量宇宙间的距离。这种特殊的天体就是我们前面提到过的标准烛光。
1700921242
1700921243
给大家看一张在天文学史上赫赫有名的照片。图中唯一的男士叫爱德华·皮克林,他在1877-1919年期间一直担任哈佛大学天文台的台长。在他当台长前,哈佛大学天文台根本不雇用女性,里面全都是男员工。有一次,皮克林被笨手笨脚的男助理惹火了,大骂他做事还不如自己家的女佣麻利。结果皮克林一不做二不休,干脆炒了这个人,并真的雇了自己的女佣来做台长助理。皮克林没看走眼,前女佣表现得出类拔萃。从那以后,皮克林就索性只雇女员工了。他这么做最大的理由是,当时女员工的工资都很低,还不到男员工的一半;所以只雇女员工的话,就可以多雇很多人来打工了。皮克林很快就建立了一个完全由女性组成的研究团队;她们全都没读过博士,但都对学术研究充满了渴望和热情。这张照片,就是皮克林的研究团队在1913年的合影。这些女士被称为哈佛计算员,有时也被戏称为“皮克林的后宫”。正是这么一群貌不惊人的女士,让哈佛大学天文台从一个原本不入流的小机构,一跃成为享誉世界的天文学研究中心。
1700921244
1700921245
1700921246
1700921247
1700921248
1892年,一位叫亨丽爱塔·勒维特的女士遭遇了一个巨大的不幸:刚从大学毕业的她,由于一场严重的疾病而彻底失去了听力。在那个年代的美国,受过高等教育的女性主要有三条出路:教师、护士和家庭主妇。但这次人生变故,让这三条出路都化为了泡影。不过一年后,她得到了一个在哈佛大学天文台当计算员的机会。尽管每周只能挣十美元,勒维特还是很开心地来到哈佛,加入了“皮克林的后宫”。据同事后来回忆,勒维特一直很敬业、内向、不苟言笑、与世无争。恐怕当时谁也无法想象,正是这位平凡到不能再平凡的失聪女士,第一个敲响了哥白尼日心说的丧钟。
1700921249
1700921250
我们在天空中看到的绝大多数星星,其亮度都是固定不变的。但天上还有很多很奇特的星星,它们的亮度会随时间而发生改变,这就是所谓的变星。在诸多变星中有一类比较特殊的,被称为造父变星,它会像心跳一样有节奏地脉动,从而使其亮度发生周期性的改变。换句话说,造父变星会不断地由亮变暗,再由暗变亮,如此循环往复。科学上把这个变化的周期称为光变周期。一般来说,造父变星至少比太阳亮一千倍以上,所以即使相距很远,我们也能看到它。
1700921251
[
上一页 ]
[ :1.700921202e+09 ]
[
下一页 ]