打字猴:1.700921226e+09
1700921226
1700921227
1700921228
1700921229 有了视差的概念,我们就可以用几何学的方法来测量遥远天体的距离了。下面这张图就是用三角视差法测量距离的原理图。我们都知道,地球每年会绕太阳一圈。如果地球在春分的时候运动到图中的A点,那么半年以后,也就是秋分的时候,它会到达离A点最远的B点。现在把A点和B点当成是一个人的左眼和右眼,分别从这两个地方来观察一颗离我们不太远的星星,就会发现这颗星星在遥远天幕上的位置发生了变化。从B点看来,相对于在A点,星星的位置会向左移动。这个向左的偏移量可以转化为一个角度,叫作星星的周年视差角。科学家已经测出,地球到太阳的平均距离约为1.5亿公里,相当于地球周长的3750倍。我们通常把这个日地距离称为1个天文单位。用1个天文单位除以星星的周年视差角,就可以算出我们到这颗星星的距离。
1700921230
1700921231 不过这个三角视差法是有局限性的:它无法测量与我们相距太远的星星。这是因为它们所对应的“周年视差”角度实在太小,根本测不出来。所以对于特别遥远的天体,天文学家一般采用第二种方法测量,它被称为标准烛光。
1700921232
1700921233
1700921234
1700921235
1700921236 我们都有这样的生活经验:一根点燃的蜡烛,要是放在近的地方,看起来就比较亮;要是放在远的地方,看起来就比较暗。这是为什么呢?下图就解释了其中的原理。爱因斯坦告诉我们,光是由一个个被称为光子的微小颗粒组成的。只要蜡烛的绝对亮度是固定的,则它在单位时间内发出的光子总数也是固定的。这些光子会呈球形均匀地向外扩散,随着扩散距离的增大,这个球的面积也会越来越大。因为整个球面上的光子都是由蜡烛发出的,其总数会一直保持不变,所以单位面积上的光子数目会相应减少。换句话说,在远处,我们眼睛能接收到的单位面积的光子数会减少,这也会使光的可视强度变小,所以我们才会觉得蜡烛变暗了。更重要的是,蜡烛的可视亮度与我们和蜡烛距离的平方成反比。比如说,如果距离扩大4倍,蜡烛的可视亮度就会减小到原来的1/16。
1700921237
1700921238
1700921239
1700921240
1700921241 所以蜡烛还有一个意想不到的用途:用来测量距离。只要能确定一根蜡烛在一个距离已知的地方的可视亮度,把它拿到更远的地方后,就可以通过测量新的可视亮度来计算我们到那里的距离。现在让我们开一下脑洞。我们要在天上找一种特殊的天体,它同时满足以下两个条件:1、特别亮,即使相距非常遥远也能看到;2、光学性质稳定,其绝对亮度固定不变。在这两个条件中,第二点更难满足。但只要能找到这样的天体,我们就可以把它当作蜡烛来测量宇宙间的距离。这种特殊的天体就是我们前面提到过的标准烛光。
1700921242
1700921243 给大家看一张在天文学史上赫赫有名的照片。图中唯一的男士叫爱德华·皮克林,他在1877-1919年期间一直担任哈佛大学天文台的台长。在他当台长前,哈佛大学天文台根本不雇用女性,里面全都是男员工。有一次,皮克林被笨手笨脚的男助理惹火了,大骂他做事还不如自己家的女佣麻利。结果皮克林一不做二不休,干脆炒了这个人,并真的雇了自己的女佣来做台长助理。皮克林没看走眼,前女佣表现得出类拔萃。从那以后,皮克林就索性只雇女员工了。他这么做最大的理由是,当时女员工的工资都很低,还不到男员工的一半;所以只雇女员工的话,就可以多雇很多人来打工了。皮克林很快就建立了一个完全由女性组成的研究团队;她们全都没读过博士,但都对学术研究充满了渴望和热情。这张照片,就是皮克林的研究团队在1913年的合影。这些女士被称为哈佛计算员,有时也被戏称为“皮克林的后宫”。正是这么一群貌不惊人的女士,让哈佛大学天文台从一个原本不入流的小机构,一跃成为享誉世界的天文学研究中心。
1700921244
1700921245
1700921246
1700921247
1700921248 1892年,一位叫亨丽爱塔·勒维特的女士遭遇了一个巨大的不幸:刚从大学毕业的她,由于一场严重的疾病而彻底失去了听力。在那个年代的美国,受过高等教育的女性主要有三条出路:教师、护士和家庭主妇。但这次人生变故,让这三条出路都化为了泡影。不过一年后,她得到了一个在哈佛大学天文台当计算员的机会。尽管每周只能挣十美元,勒维特还是很开心地来到哈佛,加入了“皮克林的后宫”。据同事后来回忆,勒维特一直很敬业、内向、不苟言笑、与世无争。恐怕当时谁也无法想象,正是这位平凡到不能再平凡的失聪女士,第一个敲响了哥白尼日心说的丧钟。
1700921249
1700921250 我们在天空中看到的绝大多数星星,其亮度都是固定不变的。但天上还有很多很奇特的星星,它们的亮度会随时间而发生改变,这就是所谓的变星。在诸多变星中有一类比较特殊的,被称为造父变星,它会像心跳一样有节奏地脉动,从而使其亮度发生周期性的改变。换句话说,造父变星会不断地由亮变暗,再由暗变亮,如此循环往复。科学上把这个变化的周期称为光变周期。一般来说,造父变星至少比太阳亮一千倍以上,所以即使相距很远,我们也能看到它。
1700921251
1700921252
1700921253
1700921254
1700921255 1908年,通过对麦哲伦星云中上千颗变星的详细研究,勒维特发现,造父变星满足一种非常奇妙的规律:在距离相同的情况下,造父变星的可视亮度和它的光变周期成正比。也就是说,一颗造父变星完成一轮完整循环所花的时间越多,它所能达到的最大亮度就越大。这个规律被称为造父变星的周光关系,也叫勒维特定律。它意味着,只要选择那些光变周期完全相同的造父变星,我们就能得到一大批绝对亮度完全相同的天体。这就是历史上发现的第一种标准烛光!这个伟大的发现,让我们能够精确测量那些极其遥远的天体的距离。从那以后,人类就不必在书斋里空想宇宙的样子,而可以用望远镜来直接地观测它。宇宙学也由此成为一门真正意义上的现代科学。
1700921256
1700921257 遗憾的是,这个伟大的发现并没有给勒维特本人带来什么好处:她没有得到任何学术界的嘉奖,没有得到一个教授的职位,甚至没有得到一张博士文凭。很多年后,她依然是一个本科学历、周薪10美元的计算员。1921年,当哈罗·沙普利继任哈佛大学天文台台长的时候,勒维特终于得到了重用,被任命为恒星光谱部门的负责人。但在1921年年底,勒维特就因身患癌症而与世长辞。她被葬在了马萨诸塞州剑桥市她家族的墓地里,墓碑上没有半句关于她学术成就的记载。甚至到今天,作为开启了观测宇宙学时代的灵魂人物,勒维特依然没有得到她应得的赞誉。她在公众间毫无知名度,即使在天文学的教科书中,也只是被当成一个小小的注脚。但我相信,总有一天,勒维特会得到她在天文学史上应得的地位。这个名字,即使被放在注脚中,依然光彩照人。
1700921258
1700921259 现在我们已经知道,宇宙学是一门基于距离测量的观测科学。我们也有了一些关于天文学距离的概念:地球的周长是4万公里,约为950个马拉松的总长;地球与太阳相距1.5亿公里,相当于地球周长的3750倍,它通常被称为1个天文单位。对我们的日常生活而言,这些距离全都是大得不得了的天文数字。但对于整个宇宙,它们却渺小到根本不值一提。为了描述宇宙的尺度,科学家创造了一个新概念,叫作光年。光年是光走一年的距离。它大约是94600亿公里,相当于63000多个天文单位。这是什么概念呢?目前人类造出的速度最快的飞行器就是我们熟悉的旅行者1号,它当前的速度已经超过了每秒17公里,相当于音速的50倍。这意味着,旅行者1号要想飞完1光年的路程,需要花上17000多年。要知道,真正有文字记载的人类文明史,也只有此数字的一个零头。
1700921260
1700921261
1700921262
1700921263
1700921264 好了,现在我们已经做好所有的准备,可以开始一次宇宙之旅了。我们将坐上一艘想象的宇宙飞船,从地球出发,一直漫游到宇宙的边缘。
1700921265
1700921266 这次旅行的第一站是我们生活的太阳系。上面这张图大致地描绘了太阳系的面貌。太阳系的主角是位于中心的太阳,它是太阳系中唯一能发光的天体,质量占太阳系总质量的99%以上,并以其强大的引力主宰着整个太阳系,让其他天体都像朝圣一样围绕它旋转。在这些朝圣的天体中,最引人注目的是所谓的八大行星,从内到外依次为水星、金星、地球、火星、木星、土星、天王星和海王星。正如我们在第一讲里提到的,它们都位于同一个平面(科学上称为黄道面),并且朝着同一方向绕太阳旋转。里面的4颗行星质量和体积都比较小,主要由固体构成,叫作类地行星;外面的4颗行星质量和体积都比较大,主要由气体构成,叫作类木行星。
1700921267
1700921268 这么讲有点过于抽象了。我给大家看一张把八大行星等比例缩小的图,让你们直观地感受一下它们的大小。可以看到,最大的行星是木星,其半径是地球的11倍。换句话说,如果把木星当成一个容器,里面能放下1300多个地球!
1700921269
1700921270 不过,木星也只是一个小角色。这次我们把太阳也纳入对比。很明显,地球就变成了一个小点了。那太阳到底有多大呢?其半径是地球的109倍。也就是说,一个太阳里能放下130万个地球!
1700921271
1700921272
1700921273
1700921274
1700921275 可能有些小朋友会问了:“太阳系中有那么多的天体,为什么就只有这8颗行星呢?”答案是,要想成为一颗行星,必须得越过两个门槛:首先,要有足够的质量,使自身的形状能一直保持为球形;其次,要有足够强的引力,能把邻近轨道的所有小天体都清除掉。这是两个很高的门槛,把太阳系内绝大多数的天体都给刷掉了。不过这个关于行星的定义非常新,是2006年在捷克首都布拉格召开的国际天文联合会上确定的。
[ 上一页 ]  [ :1.700921226e+09 ]  [ 下一页 ]