1700922280
1700922281
图3.3中的两列波彼此异相,意味着上面一列波的波峰和下面一列波的波谷对齐,反之亦然。如此,当我们把两列波叠加在一起,它们会互相削弱;如果它们的振幅也相同的话,就能完全抵消。这在图的底部作出了说明,叠加的“波”是一条水平线。用钟的语言来描述的话,就是上面一列波以12点表示的波峰,全都和下一列波以6点表示的波谷对齐了。其实,在任何位置上,上面一列波的钟面指针都与下面一列波的指针完全相反。
1700922282
1700922283
1700922284
1700922285
1700922286
图3.3:两列被安排为可以完全抵消的波。上面一列波和下面一列异相,或者说波峰和波谷对齐,并且振幅相同。当两列波相加时,它们完全抵消,结果是没有波。如图片底部所示,“波”成为水平线。
1700922287
1700922288
在这个阶段,用钟来描述波,似乎是小题大做了。确实,如果只是想把两列水波加起来,我们只需要把每列波的高度相加,完全不需要钟。对于水波这样说没错,但我们并不是执着于使用工具,引入这些钟自有原因。后面会很快看到,使用钟面来描述特别灵活,对于描述量子粒子是绝对必要的。
1700922289
1700922290
记住这条以后,我们现在需要花一点时间,发明一套精确描述钟面读数的相加规则。把规则应用于图3.3的情形中,必须得出相“抵消”的结果,什么都不剩下。诸如12点抵消6点,3点抵消9点等。当然,这种完美抵消是两列波完全异相的特殊情形。我们要找到一套更通用的规则,用于描述任意形状、任意相位的两列波相加的一般规则。
1700922291
1700922292
图3.4展示的是另外两列波。这次它们的对齐方式有所不同,一列波与另一列相比,只是相位略有偏置。我们还是用钟标记出了波峰、波谷及其中点。现在,上面一列波的12点与下面一列的3点对齐。接下来我们将要阐明这两列波相加的规则,就是平行移动一块钟的指针,使其头部与另一块钟的指针尾部重合。然后我们画一根新的指针,连接前一根指针的尾部和后一根指针头部,补齐三角形。这个方法的图解在图3.5中。新指针的长度与其他两者不同,并指向不同的方向;它可以放在新的钟面上,用来描述原来的两列波之和。
1700922293
1700922294
1700922295
1700922296
1700922297
图3.4:两列稍为偏置的波。上面一列波和中间一列波相加得到底部的波。
1700922298
1700922299
现在我们可以更精确地用简单的三角函数来计算任意两块钟相加的结果。在图3.5中,我们把指向12点和3点的两块钟面加起来。假设原来的指针长1cm(对应波峰高为1cm的水波)。当两根指针首尾相接时,我们得到一个等腰直角三角形,腰长1cm。新指针长度就是三角形第三条边的长度,在三角函数中称为弦或斜边(hypotenuse)。根据勾股定理[60],斜边的平方等于其他两边的平方和:h2=x2+y2。代入数值得到h2=(1cm)2+(1cm)2=2cm2。因此新指针的长度h就是2的平方根厘米,约1.414cm。那新指针指向什么方向呢?为此,我们需要知道三角形的一个内角,在图中以θ标出。对于这个两根指针等长,且一根指向12点,另一根指向3点的情况,也许你不借助三角函数也能算出来。斜边显然与直角边呈45度角,所以新的“时刻”是12点与3点的中间值,就是1点30分。这个例子是特殊情形,我们选定两块钟,使其指针成直角,并且长度相等,是为了简化计算。但是,这种方法显然是适用于计算出任意两块钟面相加所得的指针长度和钟点数。
1700922300
1700922301
1700922302
1700922303
1700922304
图3.5:钟面相加规则。
1700922305
1700922306
1700922307
现在我们再来回顾图3.4。在新一列波的每一点上,我们都可以用刚才的算法,通过求原来的两块钟面之和,得到新钟面的指针长和钟点,继而得知那一处的波高。如果新的钟指向12点,答案很明显,波处于波峰,波高就是指针长。同样当新钟指向6点时,显然波就处于波谷,波的深度也等于指针长。另外如果钟指向3点或者9点时,因为指针垂直于12点方向,则波高为零。要直接计算任意钟点对应的波高,我们需要用指针长h,乘以指针与12点夹角的余弦。例如,3点与12点的夹角是90度,其余弦值为零,因此波高也为零。与之类似,1点30分与12点的夹角是45度,其余弦值为,因此波高约为指针长乘以0.707。如果你的三角函数知识不足以理解最后几句,大可以略过,这没有关系。这里重要的原理是:给出指针的长度和方向,就能计算出波高。只要你仔细地画好时钟,用尺子准确地测画出指针在12点方向上的投影,即使你不理解三角函数,也可以近似求解。(笔者明确建议,阅读本书的人不要按照这个方法做,因为学会正弦和余弦是有用的。)
1700922308
1700922309
这就是钟面相加的规则。我们反复应用这个规则去计算图3.4中两列波任意对应点之和,结果看起来不错。
1700922310
1700922311
1700922312
1700922313
1700922314
图3.6:三块不同的钟,它们在12点方向上投影相同。
1700922315
1700922316
在这种对水波的描述中,最重要的就是指针在12点方向的投影,它对应一个数值:波高。看看图3.6里的三块钟。它们都对应相同的波高,它们表示的是相同水波高度的等价方式。这就是为什么在描述水波时,钟其实并不是十分必要。但显然它们是不同的钟,在后面的篇章将会看到,在用它们描述量子粒子时这个区别很大;因为对量子粒子而言,指针长度(或钟的大小)具有非常重要的意义。
1700922317
1700922318
在本书的某些地方,描述的事情会相当抽象,特别是目前阶段。为免陷入心烦意乱,我们需要登高望远。戴维孙、革末和汤姆孙实验发现的干涉图案,及其与水波实验的相似性,能启发我们做出拟设:应该用波来表示粒子,而波本身可以用很多钟面来表示。我们能想象电子波“像水波一样”传播,但我们尚未解释电子波到底是如何传播的,甚至水波的传播原理也没有解释。到目前为止,重要的是我们认识到用水波去类比,以及任何时刻的电子都可以用一列波来描述,而这列波可以像水波一样传播和干涉。在下一章我们会有更深入的认识,并且能更精确地表述:随着时间流逝,电子是如何运动的。在此过程中,我们将发现许多宝藏,包括海森伯著名的不确定性原理[61](英文Uncertainty Principle)。
1700922319
1700922320
在继续了解那些知识之前,希望我们能花一点时间,谈谈将被用于表示电子波的钟。需要强调的是,这些钟绝不是真实的,而它们的指针也和一天中的时刻完全没有关系。用一系列小钟来描述真实物理现象的想法,并不像看上去那么异想天开。物理学者们用类似的技巧来描述大自然中的许多东西,而我们已经见识到如何用一系列小钟来描述水波。
1700922321
1700922322
这种抽象技巧的另一例是描述房间内各处的温度,它可以用一系列数来表示。这些数和我们的钟一样,并不作为真正的物理对象而存在。这些数及其在房间中对应的位置,只是便于表示温度的一种方式。物理学者把这种数学结构称为场(field)。温度场只是与每个位置都对应的一系列数。在量子粒子的情形中,场更复杂一些,因为在每个位置需要一块钟,而不只是一个数。这个场通常称为粒子的波函数(wavefunction)。波函数需要一系列钟,而温度场或水波只需要一系列数,这个差异很重要。在物理学术语里,钟的出现是因为波函数是“复数”场,而温度或水波高都是“实数”场。我们不需要这些术语,因为可以用钟面来理解[62]。
1700922323
1700922324
对于温度场能直接感知,而波函数不能这一事实,我们也无需担心。即使我们不能直接摸到、闻到或者看到这个场,也没有关系。说实在的,如果将对宇宙的描述,限制于能够直接感知的事物范围内,我们就无法深入研究物理。
1700922325
1700922326
在讨论电子的双缝实验时,我们曾说,电子波的最高处,就是电子最可能所处的位置。这种诠释使我们了解了电子击中荧幕发出的点状闪光是如何组成条纹干涉图案的。但这个描述现在不够精确了。我们希望用一个数来描述在某个特定位置找到电子的概率。这就凸显用钟来表示的必要性,因为我们想要的是概率,并不只是波高。正确的诠释应该是,指针长度的平方表示在该钟所处位置找到粒子的概率。这就是为何要用钟来描述,而不是简单的数,因为前者用起来更灵活。这种诠释并非一目了然,笔者也无法很好地解释它为何是正确的。我们知道它正确,是因为它得出的预测与实验数据一致。对于波函数的这种诠释,是量子理论早期先驱者们面对的棘手问题之一。
1700922327
1700922328
波函数(即那些钟)是由奥地利物理学家埃尔温·薛定谔[63](Erwin Schrödinge)在其1926年发表的系列论文中引入量子理论的。在他6月21日投稿的论文[64]中包含了一个方程。这个方程值得每一个物理系本科生铭记在心,它很自然地被称为薛定谔方程:
1700922329
[
上一页 ]
[ :1.70092228e+09 ]
[
下一页 ]