打字猴:1.700925008e+09
1700925008 1667年,伽利略去世25年后,佛罗伦萨著名的实验学院(Accademia del Cimento [4])决定将伽利略的想法付诸检验。起初,两个观察者站得比较近。一个提灯人向另一个人发送一个灯光信号,后者看到后立即发出回复信号。然后第一个人估计从发送原始闪光到他看到回复信号之间的时间间隔,结果发现这个时间间隔只有几分之一秒。而且,就是这么短暂的时间还可能主要是两人的反应时间。实验重复了一遍又一遍,两个人分开的距离越来越远,如果光往返的时间随着距离的增加而增加,那么这将表明光速相对较低并且确实是有限的。但实际上往返时间保持不变。这意味着,光速要么是无限大,要么是快到光在两地之间走个来回的时间比起人的反应时间可以忽略不计。实验者只能得出有限的结论,即光速在10000千米/时与无穷大之间。如果再慢一点,他们就能检测到一个随两人分开距离稳定增长的时间延迟。
1700925009
1700925010 光速到底是有限的还是无限的这个悬而未决的问题直到几年后才被一位名叫奥勒·罗默的丹麦天文学家解决。罗默当时是一个年轻人,供职于第谷·布拉赫以前所在的乌勒尼伯格(Uraniborg)天文台,负责测量该天文台的确切位置,这样第谷的观察就可以与欧洲其他地方的天文台的观测数据取得相关。1672年,罗默作为出色的天文观测员赢得了声誉,他在著名的巴黎科学院获得了一个职位。这个学院的成立是为了让科学家能够独立从事研究,不必迎合率性的国王、王后或教皇。正是在巴黎,罗默得到了科学院院士乔凡尼·多美尼科·卡西尼的鼓励,开始研究与木星的卫星——特别是木卫一——相关的一种奇特的异常现象。木星的每颗卫星原本应以完全规则的方式环绕木星作轨道运动,就像我们的月球围绕地球做规则的轨道运行一样。但天文学家震惊地发现,木卫一的运行步调稍有些不规则。有时,木卫一出现在木星后方的时间比预期的提前了几分钟,而在另一些时刻,又推迟了几分钟。在天文学家看来,卫星不应该表现出这副模样,他们对木卫一的漫不经心的态度感到莫名其妙。
1700925011
1700925012 为了调查其中奥秘,罗默研究了卡西尼所记录的星表上木卫一的位置和时间的细微末节。开始时看不出任何有意义的迹象,但慢慢地他明白了其中奥妙。罗默断定,如果光有有限的速度,那么他就可以解释这一切(如图19所示)。地球和木星有时候在太阳的同一侧,而另一些时候它们位于太阳的两侧,相距遥远。当地球与木星相距最远时,从木卫一反射的光得走过3亿千米才能到达地球,这比起两个行星最接近时的距离要远得多。如果光速有限的话,那么光就需要更长的时间来穿越这段额外的距离,于是木卫一看起来就好像迟到了一样。总之,罗默认为,木卫一的运行是完全规则的,其表观上的这种不均匀性是一种由于在不同时期光从木卫一到达地球需要走过不同的距离所造成的错觉。
1700925013
1700925014
1700925015
1700925016
1700925017 图19 奥勒·罗默通过研究木星的卫星木卫一的动向测定光速。这些图与他的实际方法稍有不同。在图(a)中,木卫一即将消隐在木星后面;在图(b)中,木卫一刚好转过半圈,位于木星的前面。同时,木星几乎没有移动,而地球则已显著移动,因为地球的绕日轨道运动速度是木星的12倍。地球上的天文学家测得(a)与(b)之间的时间间隔,即木卫一完成半圈所花费的时间。在图中(c)中,木卫一完成另一半圈的转动回到其起始位置,而地球则移动到远离木星的位置。天文学家再次测量(b)与(c)之间的时间间隔,这原本应该与(a)与(b)之间的时间间隔相同,但事实上前者要长得多。究其原因,这多出来的时间是花费在光从木卫一到(c)图中地球位置的额外距离上,因为地球现在远离木星。这个时间延迟和地球到木星的距离可被用于估计光速。(在这些图中地球移动的距离被夸大了,因为木卫一绕行木星的周期不到两天时间,而且与此同时木星的位置也会发生变化,这些都会使问题变得复杂化。)
1700925018
1700925019 为了帮助理解这里所发生的事情,我们不妨想象一下你位于一座炮台附近,这座炮台每小时发一炮。当你听到炮声,便立即启动秒表,并驾车以100千米/时的速度直线前行,这样当大炮再次开炮时你正好在100千米外。你立即停车,随后才听到很微弱的炮声。假设声速大约为1000千米/时,你会察觉出,从第一声炮响到第二声炮响之间的时间间隔是66分钟,而不是60分钟。这66分钟里包含了两次发炮的时间间隔60分钟和第二次炮响到传递到100千米外的你这里所需的6分钟。
1700925020
1700925021 罗默花了3年时间来分析木卫一的观测时间记录以及地球和木星的相对位置数据,他估计光速为190000千米/秒。事实上,这个量的实际值大约是30万千米/秒。但重要的一点是,罗默的工作表明,光有一个有限的速度值,尽管他导出的值不很准确。古老的争论终于得到了解决。
1700925022
1700925023 然而,在罗默宣布了他的结果后卡西尼却悲痛欲绝,因为他无法接受罗默德的结论,尽管这一计算结果主要是根据他的观测数据。卡西尼对罗默作了严厉批评,并成为一大群坚持光速无限大的学者们的代言人。罗默没有退缩,他用他的有限光速理论预言了木卫一将在1676年11月9日发生月食,他所预言的时间比他的对手所预言的要晚10多分钟。这是“我告诉过你肯定是这样”的一个典型例子——木卫一的月食时间确实晚了几分钟。罗默被证明是正确的,他发表了另一篇证实他的光速测量的论文。
1700925024
1700925025 这次星食的预言本应一劳永逸地解决这一争论,但正如我们在日心说与地心说的论战中所看到的那样,有时很多纯属逻辑和说理之外的因素会影响到科学的共识。卡西尼既比罗默资历深也比他活得长,因此仅凭政治影响力和活着这两点,他就能够动摇人们对罗默的光速有限的说法。然而,几十年过后,卡西尼及其同事还是不得不让位给新一代科学家,后者对罗默的结论不带偏见,他们亲自予以检验并接受了它。
1700925026
1700925027 一旦科学家公认了光速是有限的,他们便开始试图解决另一个谜团——它是如何传播的:究竟是什么媒介负责光的传递?科学家知道,声音可以在各种介质中传播——说话的人通过气态介质空气传递声波,鲸通过液态介质水来彼此唱和,我们可以通过牙齿和耳朵之间的固态介质骨骼来听到我们的牙齿发出的格格声。光也可以通过气体、液体和固体,例如空气、水和玻璃,但光与声波之间有根本性区别,这一点德国马格德堡市的市长奥托·冯·格里克在1657年的一项著名的系列实验中就给予了证明。
1700925028
1700925029 冯·格里克发明了第一台真空泵。他对探索真空的奇特性质非常热心。在一项实验中,他将两个大铜质半球面对面地合起来,然后抽去其中的空气,于是它们便表现得像两个吸力非常强的吸盘紧紧吸在一起。为了展示这一科学成果的奇妙性质,他让两对八匹马分别向两边拉这两半球,结果根本拉不开。
1700925030
1700925031 在一项精心安排的实验中,冯·格里克将一个内置有响铃的玻璃瓶抽真空。当空气被抽出瓶子后,观众就再也听不到铃声了,但他们仍然可以看到木槌敲击响铃的动作。因此很明显,声音不能在真空中传播。但同时实验表明,光可以在真空中传播,因为响铃还能被看见,瓶子里面没有变得漆黑一片。奇了怪了,如果光可以在真空中传播,那么一定有什么东西穿过了真空。
1700925032
1700925033 面对这种明显的矛盾,科学家们开始怀疑真空是否真的是空的。玻璃瓶已被抽去空气,但里面也许还剩有一些其他东西,它们提供了传播光所需的介质特性。到了19世纪,物理学家们提出,整个宇宙中充满了他们称之为发光的以太物质,它在某种程度上起了传播光的媒介作用。这种假设性物质具有一些显著的特性,正如维多利亚时代[5]伟大的科学家开尔文勋爵所说的那样:
1700925034
1700925035 什么是发光的以太呢?它是一种其密度远远小于空气的物质——为空气密度的百万的百万的百万的分之一。对这个极限我们可以有某种概念。我们相信它是真实的东西,与其密度不同,它很硬:每秒钟可以振动4亿万次;并且在这样的密度下不会对通过它的任何物质产生丝毫的阻力。
1700925036
1700925037 换句话说,以太硬得令人难以置信,同时又稀薄得无以言表。它还是透明的、无摩擦的且具有化学惰性。它就在我们身边,但它显然很难识别,因为从来没有人见过它、抓住过它或是撞上它。不过美国的第一位诺贝尔物理学奖获得者阿尔伯特·迈克耳孙却相信他能证明它的存在。
1700925038
1700925039 迈克耳孙的犹太教父母为了逃离普鲁士的迫害于1854年来到美国,那时他才两岁。他在旧金山长大,后就读于美国海军学院,在那里,他以第25名的较低排名毕业于航海技术专业,但他在光学方面的成绩却是顶尖的。这促使学院院长做出这样的评价:“如果将来你少关注些科学上的事情,在海军火炮使用方面多加研讨,这样才可能在未来某个时候你已具备足够的知识服务于你的国家。”迈克耳孙明智地转向专职光学研究。1878年,在他25岁那年,他断定光速为299910±50千米/秒,这个值比以往的估计精度上提高了20倍。
1700925040
1700925041 随后,在1880年,迈克耳孙设计了一项实验,他希望能够证明传播光的以太介质的存在。他将一束光分成相互垂直的两束光。一束沿地球在太空中运动的方向行进,另一束沿与第一束光成直角的方向行进。两束光行进相等的距离后,被反射镜反射回来,然后合成为一个光束。在合并时它们经历一个被称为“干涉”的过程,它使得迈克耳孙能够比较两光束并确定经过这段时间是否存在光程差。
1700925042
1700925043 迈克耳孙知道,地球绕日运行的速度大约为100000千米每小时,这意味着它也以同样的速度穿过以太。由于以太被认为是弥漫在宇宙中的稳定介质,地球在宇宙中穿行将产生一种以太风。它与我们在无风的日子里开着敞篷汽车兜风时感觉到的伪风类似——它不是自然风,而是你自身的运动引起的风。因此如果光是由以太传递,其速度就应受到以太风的影响。更具体点说,在迈克耳孙实验中,一束光是顺着或逆着以太风行进,因此其速度应受到明显影响,而另一束光的方向与以太风垂直,因此其速度受到的影响较小。如果两束光走过的时间不同,那么迈克耳孙就能够将这一差异作为以太存在的强有力证据。
1700925044
1700925045 由于这项检测以太风的实验很复杂,因此迈克耳孙用一个难题来解释实验的基本前提:
1700925046
1700925047 假设有一条宽度100英尺的河流和两个游泳者。二者的游泳速度相同,例如都是5英尺每秒。河水的流速稳定在3英尺每秒。游泳比赛按以下方式进行:他们在同一岸边的同一地点同时出发。一个直接游到河对岸的最近点,然后转身游回来。另一位选手就在河的一侧游,逆流而上游过与河的宽度相等的距离(沿岸测量),然后再游回到起点,问谁能赢得比赛?(见图20图解)
1700925048
1700925049 迈克耳孙为他的实验置备了最好的光源和反射镜,在设备装配时采取了一切可能的预防措施。所有光学器件都被仔细地准直、调平和抛光。为了提高设备的灵敏度,最大限度地减少误差,他甚至将主要组件平台漂浮在一个巨大的充满汞液的浴缸内来隔离外部影响,例如远处脚步声所造成的震颤。这个实验的主要目的是要证明以太的存在。迈克耳孙已竭尽一切可能来最大限度地提高检测机会——这也正是为什么他在检测到相互垂直的两束光在时间上没有任何差别时会感到那么惊奇。没有存在以太的任何迹象。这是个令人震惊的结果。
1700925050
1700925051 迈克耳孙对独自找出什么地方出错已经感到绝望,他聘请了化学家爱德华·莫雷来和他一起重整旗鼓。他们一起重建了装置,改进了每一台设备以使实验更灵敏,然后一遍遍地进行测量。最终,在1887年,经过7年的重复实验后,他们发表了自己的明确结果。仍未观察到存在以太的任何迹象。因此,他们被迫得出结论:以太不存在。
1700925052
1700925053
1700925054
1700925055
1700925056 图20 阿尔伯特·迈克耳孙用这幅游泳竞赛的比喻来解释他的以太实验。两位游泳者扮演着相互垂直的两束光的角色,二者最后回到同一起点。一个先逆流游过去再顺流又回来,另一位横着水流游——就像一束光先顺着再逆着以太风传播,另一束光垂直于以太风传播。两位选手在静水中的游速均为5英尺每秒,要游的距离都是200英尺。选手A先向上游游100英尺,再顺水向下游游100英尺;选手B游到河对岸再又回来,也是200英尺。水流速度是3英尺/秒,问同时出发后哪一位选手先回到出发点?
1700925057
[ 上一页 ]  [ :1.700925008e+09 ]  [ 下一页 ]