打字猴:1.700926967e+09
1700926967
1700926968 如果用这种方法来评估人的平均身高或恒星的平均亮度,将更加准确。但天文学家们研究的天体是如此遥远,他们不得不将这种方法应用到每个星系的最亮的恒星上,这是他们能够看到的对象。自1940年以来,天文学家一直就用这一技术来测量遥远星系的距离,并自信这么做基本上是可靠的,尽管他们有思想准备,所测的距离可能需要进行调整。这就是为什么巴德要求桑德奇来检查他的估计值。事实上,桑德奇发现,最亮恒星方法有一个根本性的缺陷。
1700926969
1700926970 由于照相术的改进,桑德奇可以看出,以前一直被认定为遥远星系中最亮的恒星其实是聚在一起的别的东西。宇宙中大部分的氢已聚合成熟悉的致密星,但也有相当数量的氢是以巨大的云团的形式存在的,它们称为HⅡ区。HⅡ区吸收周围恒星的光,并被这些光加热到超过10000℃。由于它的温度和大小,一个HⅡ区的光度可以盖过几乎所有的恒星。
1700926971
1700926972 在桑德奇之前,天文学家一直无意识地错将仙女座星系中可见的最亮恒星与更遥远的、新发现的星系里最亮的HⅡ区做比较。以为HⅡ区是恒星。天文学家认为这些新星系比较接近,因为它们的最亮“恒星”看起来相对较亮。当桑德奇得到了分辨率高到足以将这些HⅡ区与真正的恒星区分开来的图像后,他的结论是,遥远星系中最亮的恒星实际上要比误解的HⅡ区暗很多,因此这些星系必定比以前估计的远得多。
1700926973
1700926974 根据大爆炸模型,这些遥远星系的距离对于估算宇宙的年龄绝对关键。1952年,巴德将星系的距离翻了一番,同时也将宇宙的年龄翻了一番,达到36亿年。两年后,桑德奇将星系推得更远,宇宙的年龄也被增加到55亿年。
1700926975
1700926976 尽管有了这些增加,测量值还是低估了。在整个20世纪50年代,桑德奇一直在从事他的星系距离测量工作。不论是星系距离还是由此导致的宇宙年龄一直在持续拉长。事实上,桑德奇将成为测量星系距离和宇宙年龄的主要人物,并且很大程度上正是由于他的观察,在100亿岁到200亿岁之间的宇宙最终变得清晰。这个宽广的范围与宇宙中其他对象肯定是相容的。稳恒态理论不再嘲笑大爆炸理论说它解释不了为什么宇宙会比它所包含的恒星年轻了。
1700926977
1700926978 宇宙炼金术
1700926979
1700926980 尽管时标困难现在算解决了,但大爆炸模型还有来自其他问题的困扰。最重要的是有关核合成,特别是重元素形成的问题。乔治·伽莫夫曾夸口:“这些元素冷却的时间比做一盘烧鸭加烤土豆所花的时间还要短。”总之,他认为所有各种原子核都是在大爆炸后的1小时内产生的。然而,尽管伽莫夫、阿尔弗和赫尔曼尽了最大努力,但除了最轻的原子,如氢和氦,其他元素的原子的形成机制一直无法找到,即使在大爆炸后存在一个炽热期。如果重元素不是在大爆炸之后瞬间产生,那么问题很清楚:它们是何时何地被创造出来的?
1700926981
1700926982
1700926983
1700926984
1700926985 (最后一排左起)F.霍伊尔、H.C.范德胡斯特、A.R.桑德奇、J.A.惠勒、H.赞斯特拉、L.勒杜
1700926986
1700926987 (中间一排左起)O.S.克莱恩、W.W.摩根、B.V.库卡尔金、M.菲尔兹、W.巴德、H.邦迪、T.戈尔德、L.罗森菲尔德、A.C.B.洛弗尔、J.热厄尼奥
1700926988
1700926989 (中间一排前站着的两人)V.A.安巴尔楚米扬、E.沙兹曼
1700926990
1700926991 (前排坐着的)W.H.麦克雷、J.H.奥尔特、G.勒迈特、C.J.高特、W.泡利、W.L.布拉格、J.R.奥本海默、C.穆勒、H.沙普利、O.赫克曼
1700926992
1700926993 图88 这是出席1958年索尔维会议的一张集体照。照片显示阿伦·桑德奇和沃尔特·巴德参加了这次会议。他们修订的星系测量距离增加了大爆炸模型下的宇宙年龄。大爆炸模型和稳恒态模型之间争论的主要角色都在照片里,包括霍伊尔、戈尔德、邦迪和勒迈特。
1700926994
1700926995 尽管学术争论非常激烈,但不影响两个阵营之间的个人友谊。例如,霍伊尔非常喜欢勒迈特,形容他是一个“粗壮敦实的人,满嘴笑话,充满了笑声”。霍伊尔深情地回忆起在罗马的一次会议后他们驱车游览意大利的情形:“整个行程只有乔治出了点状况,那是在午餐后。我中午总是随便吃点,这样下午我可以继续开车,而乔治想来顿大餐,上瓶酒,这样他下午就可以在车上睡觉了。我们达成一致,下午让乔治在车后座睡觉。但不幸的是,严重的头痛几乎让他合不上眼。”
1700926996
1700926997 亚瑟·爱丁顿曾提出一种可能的核合成理论:“我认为恒星就是较轻元素的原子复合成较重元素的坩埚。”然而,恒星的温度据估计在表面只有几千度,在核心也只有几百万度。这个温度当然足以使氢慢慢变成氦,但要将这些氦原子聚变成真正的重核,这个温度显然不够,这需要数十亿度的温度才行。
1700926998
1700926999 例如,要形成氖原子,需要30亿度的温度,要产生更重的硅原子将需要130亿度甚至更高的温度。这导致了另一个问题。即使存在创造氖的环境,也未必就能热到产生硅。反之,如果环境温度高到足以产生硅,那么所有的氖都将被转换成某种较重的元素。仿佛每一种元素的原子都需要各自的量身定做的坩埚,宇宙将不得不组建种类繁多的致密环境。可惜的是,即使这些坩埚存在的话,也没人能知道它们在哪里。
1700927000
1700927001 对解决这个问题做出主要贡献的当属霍伊尔。他不是将核合成看成是大爆炸与稳恒态模型孰胜孰败的问题,而是这两个理论都需要关注的共性问题。宇宙大爆炸模型在某种程度上需要解释宇宙开始时的基本粒子是如何转变成不同丰度的较重的原子的。同样,稳恒态模型也需要解释星系退行时不断生成的粒子是如何转换成较重的原子的。霍伊尔自打成为初级研究员开始便一直惦记着核合成问题,但直到20世纪40年代末他才迈出解决这个问题的试探性的第一步。当他猜测到恒星在其生命的不同阶段所发生的事情时,这个问题开始取得进展。
1700927002
1700927003 中年恒星通常是稳定的,它通过将氢聚变成氦来产生热能,通过辐射光能来耗散掉这些热量。同时,恒星的所有质量靠自身引力被拉向内,这种向内的拉力靠星核的高温引起的巨大的向外压力来抵消。如在第3章所讨论的,恒星的这种平衡类似于气球上的受力平衡,橡皮膜的应力总试图让气球向内收缩,而气球内的空气压强则使气球向外膨胀。这个比喻可用来解释为什么造父星的光度是可变的。
1700927004
1700927005 霍伊尔对于恒星理论和引力坍缩与指向外的热压强之间的平衡理论很熟悉,但他想知道当这种平衡被打破时会发生什么。具体来说就是,霍伊尔想了解,在恒星的晚年,当氢燃料行将耗尽时会发生什么。毫不奇怪,燃料短缺将导致恒星开始降温。温度的下降将导致向外压力的下降,引力作用会变得过强,恒星将开始收缩。关键是,霍伊尔意识到这种收缩不是故事的结束。
1700927006
1700927007 随着整个恒星向内收缩,压缩将导致恒星星核升温并使向外的压力增大,由此使得收缩停止。压缩带来的温度上升有几个原因,但其中的一个是压缩导致更多的核反应,从而产生更多的热量。
1700927008
1700927009 虽然这种额外的热量使得恒星重新建立起某种程度的稳定性,但它只是一种暂时的中止。恒星的死亡只是被推迟了。恒星继续消耗更多的燃料,并最终减少到燃料供应变得至关重要。缺乏燃料意味着缺乏产能,因此星核开始再次冷却,这导致了另一个压缩阶段。同样,这次压缩使得星核再次得到加热,坍缩再次停止,直到下一次燃料短缺。这种反复起-停的坍缩方式意味着很多恒星都将经历一个缓慢的、挥之不去的死亡过程。
1700927010
1700927011 霍伊尔着手分析了不同类型(如小型的、中型的、大型的、星族Ⅰ的,星族Ⅱ的)恒星的演化过程。经过几年的专门研究,他成功地完成了对不同的恒星在其接近寿命终点时所发生的所有温度和压力变化的计算。最重要的是,他还制定了每个恒星在濒临死亡时的核反应,关键是给出了极端温度和压力的不同组合是如何导致一系列中等质量和重原子核的产生的,其结果如表5所示。
1700927012
1700927013 表5
1700927014
1700927015 霍伊尔计算了不同的恒星在其寿命的不同阶段会发生何种核合成的条件。下表给出了大约25倍太阳质量的恒星上所发生的核合成反应类型。与典型星相比,这种大质量恒星的寿命非常短。最初,恒星花上几百万年的时间使氢聚变成氦。在其寿命的后期阶段,温度和压力增加,使得氧、镁、硅、铁和其他元素的核合成得以进行。而各种更重的原子则要在最终和最激烈的阶段才能产生。
1700927016
[ 上一页 ]  [ :1.700926967e+09 ]  [ 下一页 ]