1700926980
尽管时标困难现在算解决了,但大爆炸模型还有来自其他问题的困扰。最重要的是有关核合成,特别是重元素形成的问题。乔治·伽莫夫曾夸口:“这些元素冷却的时间比做一盘烧鸭加烤土豆所花的时间还要短。”总之,他认为所有各种原子核都是在大爆炸后的1小时内产生的。然而,尽管伽莫夫、阿尔弗和赫尔曼尽了最大努力,但除了最轻的原子,如氢和氦,其他元素的原子的形成机制一直无法找到,即使在大爆炸后存在一个炽热期。如果重元素不是在大爆炸之后瞬间产生,那么问题很清楚:它们是何时何地被创造出来的?
1700926981
1700926982
1700926983
1700926984
1700926985
(最后一排左起)F.霍伊尔、H.C.范德胡斯特、A.R.桑德奇、J.A.惠勒、H.赞斯特拉、L.勒杜
1700926986
1700926987
(中间一排左起)O.S.克莱恩、W.W.摩根、B.V.库卡尔金、M.菲尔兹、W.巴德、H.邦迪、T.戈尔德、L.罗森菲尔德、A.C.B.洛弗尔、J.热厄尼奥
1700926988
1700926989
(中间一排前站着的两人)V.A.安巴尔楚米扬、E.沙兹曼
1700926990
1700926991
(前排坐着的)W.H.麦克雷、J.H.奥尔特、G.勒迈特、C.J.高特、W.泡利、W.L.布拉格、J.R.奥本海默、C.穆勒、H.沙普利、O.赫克曼
1700926992
1700926993
图88 这是出席1958年索尔维会议的一张集体照。照片显示阿伦·桑德奇和沃尔特·巴德参加了这次会议。他们修订的星系测量距离增加了大爆炸模型下的宇宙年龄。大爆炸模型和稳恒态模型之间争论的主要角色都在照片里,包括霍伊尔、戈尔德、邦迪和勒迈特。
1700926994
1700926995
尽管学术争论非常激烈,但不影响两个阵营之间的个人友谊。例如,霍伊尔非常喜欢勒迈特,形容他是一个“粗壮敦实的人,满嘴笑话,充满了笑声”。霍伊尔深情地回忆起在罗马的一次会议后他们驱车游览意大利的情形:“整个行程只有乔治出了点状况,那是在午餐后。我中午总是随便吃点,这样下午我可以继续开车,而乔治想来顿大餐,上瓶酒,这样他下午就可以在车上睡觉了。我们达成一致,下午让乔治在车后座睡觉。但不幸的是,严重的头痛几乎让他合不上眼。”
1700926996
1700926997
亚瑟·爱丁顿曾提出一种可能的核合成理论:“我认为恒星就是较轻元素的原子复合成较重元素的坩埚。”然而,恒星的温度据估计在表面只有几千度,在核心也只有几百万度。这个温度当然足以使氢慢慢变成氦,但要将这些氦原子聚变成真正的重核,这个温度显然不够,这需要数十亿度的温度才行。
1700926998
1700926999
例如,要形成氖原子,需要30亿度的温度,要产生更重的硅原子将需要130亿度甚至更高的温度。这导致了另一个问题。即使存在创造氖的环境,也未必就能热到产生硅。反之,如果环境温度高到足以产生硅,那么所有的氖都将被转换成某种较重的元素。仿佛每一种元素的原子都需要各自的量身定做的坩埚,宇宙将不得不组建种类繁多的致密环境。可惜的是,即使这些坩埚存在的话,也没人能知道它们在哪里。
1700927000
1700927001
对解决这个问题做出主要贡献的当属霍伊尔。他不是将核合成看成是大爆炸与稳恒态模型孰胜孰败的问题,而是这两个理论都需要关注的共性问题。宇宙大爆炸模型在某种程度上需要解释宇宙开始时的基本粒子是如何转变成不同丰度的较重的原子的。同样,稳恒态模型也需要解释星系退行时不断生成的粒子是如何转换成较重的原子的。霍伊尔自打成为初级研究员开始便一直惦记着核合成问题,但直到20世纪40年代末他才迈出解决这个问题的试探性的第一步。当他猜测到恒星在其生命的不同阶段所发生的事情时,这个问题开始取得进展。
1700927002
1700927003
中年恒星通常是稳定的,它通过将氢聚变成氦来产生热能,通过辐射光能来耗散掉这些热量。同时,恒星的所有质量靠自身引力被拉向内,这种向内的拉力靠星核的高温引起的巨大的向外压力来抵消。如在第3章所讨论的,恒星的这种平衡类似于气球上的受力平衡,橡皮膜的应力总试图让气球向内收缩,而气球内的空气压强则使气球向外膨胀。这个比喻可用来解释为什么造父星的光度是可变的。
1700927004
1700927005
霍伊尔对于恒星理论和引力坍缩与指向外的热压强之间的平衡理论很熟悉,但他想知道当这种平衡被打破时会发生什么。具体来说就是,霍伊尔想了解,在恒星的晚年,当氢燃料行将耗尽时会发生什么。毫不奇怪,燃料短缺将导致恒星开始降温。温度的下降将导致向外压力的下降,引力作用会变得过强,恒星将开始收缩。关键是,霍伊尔意识到这种收缩不是故事的结束。
1700927006
1700927007
随着整个恒星向内收缩,压缩将导致恒星星核升温并使向外的压力增大,由此使得收缩停止。压缩带来的温度上升有几个原因,但其中的一个是压缩导致更多的核反应,从而产生更多的热量。
1700927008
1700927009
虽然这种额外的热量使得恒星重新建立起某种程度的稳定性,但它只是一种暂时的中止。恒星的死亡只是被推迟了。恒星继续消耗更多的燃料,并最终减少到燃料供应变得至关重要。缺乏燃料意味着缺乏产能,因此星核开始再次冷却,这导致了另一个压缩阶段。同样,这次压缩使得星核再次得到加热,坍缩再次停止,直到下一次燃料短缺。这种反复起-停的坍缩方式意味着很多恒星都将经历一个缓慢的、挥之不去的死亡过程。
1700927010
1700927011
霍伊尔着手分析了不同类型(如小型的、中型的、大型的、星族Ⅰ的,星族Ⅱ的)恒星的演化过程。经过几年的专门研究,他成功地完成了对不同的恒星在其接近寿命终点时所发生的所有温度和压力变化的计算。最重要的是,他还制定了每个恒星在濒临死亡时的核反应,关键是给出了极端温度和压力的不同组合是如何导致一系列中等质量和重原子核的产生的,其结果如表5所示。
1700927012
1700927013
表5
1700927014
1700927015
霍伊尔计算了不同的恒星在其寿命的不同阶段会发生何种核合成的条件。下表给出了大约25倍太阳质量的恒星上所发生的核合成反应类型。与典型星相比,这种大质量恒星的寿命非常短。最初,恒星花上几百万年的时间使氢聚变成氦。在其寿命的后期阶段,温度和压力增加,使得氧、镁、硅、铁和其他元素的核合成得以进行。而各种更重的原子则要在最终和最激烈的阶段才能产生。
1700927016
1700927017
1700927018
1700927019
1700927020
很明显,每种类型的恒星都可以作为生成不同元素的坩埚,因为恒星在其寿命和死亡的过程中内部发生着巨大变化。霍伊尔的计算甚至可以说明今天我们所知道的几乎所有元素的准确丰度,可以解释为什么氧和铁是常见的,而金和铂金则是罕见的。
1700927021
1700927022
在例外的情况下,一个质量非常大的恒星的早期坍缩阶段变得不可停歇,恒星死亡得相当迅速。这便是超新星,恒星死亡最猛烈的例子,它以无与伦比的强度引起内爆。当超新星爆发时,一颗恒星所释放的能量大到超过100亿颗一般恒星亮度的总和(这就是为什么一颗超新星的爆发会让参与大辩论的天文学家感到困惑的原因,如前面第3章所讨论的那样)。霍伊尔表明,超新星打造出一种最极端的恒星环境,从而允许罕见的核反应发生,从而产生出最重和最奇特的原子核。
1700927023
1700927024
霍伊尔的研究的最重要的结论之一是恒星的死亡并不标志着核合成过程的结束。随着恒星向内爆缩,它发出巨大的冲击波,从而导致整个星体爆炸,使得原子飞向整个宇宙。重要的是,一些原子是恒星寿命最后阶段的核反应的产物。这颗恒星碎片与漂浮在宇宙中的其他碎片(包括来自其他死亡恒星的原子)混合在一起,最终凝聚成全新的恒星。这些第二代恒星一开始就能进行核合成,因为它们已经有了某些较重的原子。这意味着当它们濒临死亡和内爆时将会合成更重的原子。我们自己的太阳可能就是第三代恒星。
1700927025
1700927026
马库斯·乔恩——《魔法炉》的作者——描述了恒星炼金术的意义:“为了我们能够活着,已经有数十亿、数百亿、甚至上千亿颗恒星死亡了。我们血液中的铁,我们骨骼中的钙,我们每一次呼吸而充满我们肺部的氧气——所有这些都是在地球诞生之前很久的星星炉里煮出来的。”浪漫主义者可以认为自己是由星尘构成的。愤世嫉俗者可以认为自己就是核废料。
1700927027
1700927028
霍伊尔解决了宇宙学中最大的困惑,并找到了一个几乎堪称完美的解决方案,但有一个突出问题尚待解决。表5显示了某种特定类型恒星上的核合成链:氢转化为氦,然后氦聚变成碳,碳变成更重的元素。虽然表中明确列出了氦到碳的阶段,但实际上霍伊尔并没有真正解决这一步是怎么发生的。据他所见,没有什么可行的核途径使氦转化成碳。这是一个主要问题,因为除非他能解释碳的形成,否则他无法解释其他所有的核反应是怎么发生的,因为在生成它们的反应链的某个点上都需要有碳的参与。这对于所有类型的恒星都是个问题——根本没有办法把氦变成碳。
1700927029
[
上一页 ]
[ :1.70092698e+09 ]
[
下一页 ]