1700927035
1700927036
一种可能是3个氦核同时碰撞在一起形成1个碳核。这是个好主意,可惜在实践中是不可能的。3个氦核恰好同时同地以相同的速度发生聚变的可能性实际为零。另一种途径是2个氦核聚变形成1个铍8核(4个质子加4个中子),然后这个铍8核再与另一个氦核聚变形成碳。这条途径和三氦核碰撞机制如图89所示。
1700927037
1700927038
1700927039
1700927040
1700927041
图89 图(a)显示了氦到碳的一条可能的核聚变路径,它需要3个氦核同时碰撞。这种可能性非常低。第二条路径如图(b)所示,需要先2个氦核碰撞形成铍,然后铍核再与另一个氦核碰撞聚变成碳。
1700927042
1700927043
然而,铍8很不稳定,这就是为什么它被伽莫夫称为生成氦之后的核的道路上的绊脚石的原因。事实上,铍8核是如此不稳定(罕见形式),以至于通常在自发衰变前只能维持不到10-15秒。我们只能想象一个氦核在其飞行路径上恰巧遇到一个短暂存在的铍8核并合并成碳12。但即使这个过程确实能发生,也还需要克服另一个障碍。
1700927044
1700927045
氦核与铍核的结合质量比一个碳核的质量要大得多,因此,如果氦和铍聚合成碳,那么就可能会有多余的质量。通常情况下,核反应可以将多余的质量转换成能量(通过E=mc2),但质量差越大,反应所需的时间就越长。而铍8核并不具备这个时间。碳的形成必须几乎在生成铍8核的同时完成,因为铍8核的生命期实在太短。
1700927046
1700927047
因此,取道铍8路生成碳核的路径上有两个障碍。首先,铍8根本不稳定,持续时间不足亿万分之一秒;其次,氦和铍聚变为碳需要一个很长的时间窗口,因为存在轻微的质量不平衡。僵局似乎不可能打破,因为这两个问题彼此冲突。对此霍伊尔似乎可以选择放弃,转向研究些较简单的东西。但相反,他在此完成了科学史上的一次最伟大的直觉跳跃。
1700927048
1700927049
虽然任何核都有一个标准结构,但霍伊尔知道,核内的质子和中子还可以有另一种安排。我们可以将构成碳核的12个粒子看成是12个小球。这些小球有两种可能的排列,如图90所示。一种排列是分成两层每层6个的矩形结构;另一种是分3层每层4个的三角形排列(这里过于简单化了,因为在核的层面上事情并非像几何排列那么简洁)。让我们假设,第一种安排就是我们最常见的碳的形态,第二种是所谓的碳的受激形态。通过注入能量是可以将一般形态的碳核转变为受激态的。因为能量和质量是等价的(同样还是由于E=mc2),受激态的碳核的质量要比普通碳核稍大。霍伊尔断定,碳12的受激形式肯定具有正确的质量,即与铍8和氦4的组合质量完全匹配的质量。如果存在这样的碳核,那么铍8与氦4就可以迅速反应形成碳12。尽管铍8寿命很短,但生成大量的碳12是可能的。
1700927050
1700927051
1700927052
1700927053
1700927054
图90 碳的两种可能形式。虽然实际上质子(深色球)和中子(浅色球)不会排列得如此整齐,而是倾向于形成球形团簇。图示要点在于表明碳核可以存在具有不同质量的不同排列方式。
1700927055
1700927056
问题解决了!
1700927057
1700927058
但是科学家不能想象一个问题只有一种解决方案。正如霍伊尔知道,虽然具有所需质量的碳12激发态打开了生成碳,乃至通向所有重元素的大门,但这并不意味着这种状态一定存在。受激核可以有非常特殊的质量,但科学家不能总寄希望于有一个方便的值。幸运的是,霍伊尔不只是一位只会想象的人。他对存在碳的正确激发态的自信是基于一种看似怪异但十分有效的逻辑推理链。
1700927059
1700927060
霍伊尔的推理前提是,他存在于宇宙。不仅如此,他指出,他还是一个以碳为基础的生命形式。因此,宇宙中必然存在一种制造碳的方式。然而,生成碳的唯一方法似乎依赖于碳的某个特定激发态的存在。因此这种激发态必定存在。霍伊尔严格运用的这种思考问题的方法后来被称为人存原理。这一原理可以用多种方式来定义和解释,但有一个版本可以这么来陈述:
1700927061
1700927062
我们在这里研究宇宙,因此宇宙的法则必定与我们的存在相一致。
1700927063
1700927064
在霍伊尔的推理中,他说碳12核是他的一个组成部分,因此碳的正确激发态必须存在,否则碳12和弗雷德·霍伊尔都不会存在。
1700927065
1700927066
从专业上讲,霍伊尔预测,他提出的碳的激发态的能量要比基本碳核高出7.65兆电子伏(MeV)。对于测量像原子核这样的微观粒子来说,兆电子伏能量是一个很小的能量单位。霍伊尔现在想知道这个激发态是否真的存在。
1700927067
1700927068
1953年,在他提出碳的这种激发态后不久,霍伊尔利用学术休假应邀到访加州理工学院。在那里,他有机会来检验他的理论。著名的凯洛格辐射实验室就坐落在加州理工学院的校园里,该实验室的威利·福勒是世界上最伟大的实验核物理学家之一。一天,霍伊尔来到福勒的办公室,告诉他自己对碳的激发态能量要比普通态高出7.65兆电子伏的预言。以前还没有人对核的激发态作出这样精确的预测,因为其中的物理和数学过于复杂。但霍伊尔的预测纯粹是基于逻辑,而不是数学或物理。霍伊尔想让福勒去寻找他所预言的这种碳12的激发态来证明他是对的。
1700927069
1700927070
福勒是第一次遇见霍伊尔,他对这个约克郡佬的想法没有一点思想准备。福勒最初的反应是,碳12已经有详细的测量结果,没发现有7.65兆电子伏的激发态的记录。他后来回忆说,他对霍伊尔的反应完全是负面的:“我很怀疑这位稳恒态宇宙学家,这个理论家,问的这个碳12核的问题……这个有趣的小个子男人认为我们应该停止我们所有正在进行的重要工作……来寻找这种态,我们把他打发了。离开我们这里,小伙子,你打扰了我们。”
1700927071
1700927072
霍伊尔继续展开他的论证,指出福勒只需几天时间专门搜寻一下碳12的7.65兆电子伏的态就可以检验这一理论。如果霍伊尔是错误的,那么福勒得花上几个晚上来追补他的日程安排;但如果霍伊尔是正确的话,福勒将作出核物理学领域的最大发现之一而获得奖励。福勒被这个简单的成本-效益分析折服了。他要求他的团队立即开始搜寻这种激发态,万一它在早期测量中被忽略了呢。
1700927073
1700927074
经过10天的对碳12核的分析,福勒的研究小组发现了一种新的激发态。正是7.65兆电子伏,与霍伊尔说的完全一样。这是第一次,也是唯一一次,科学家用人存原理做预测并被证明是正确的。这是极其天才的一个实例。
1700927075
1700927076
霍伊尔终于证明并确认了由氦转化为铍,然后变成碳的机制。他证实了碳是在大约2亿摄氏度的温度下通过图89(b)所示的反应合成的。这是一个缓慢的过程,但数十亿颗恒星经过数十亿年的演化,可以制造出大量的碳。
1700927077
1700927078
对碳的生成的解释确立了生成宇宙中所有其他元素的核反应的起点。霍伊尔解决了核合成问题。这对于稳恒态模型是一个突破,因为霍伊尔可以声称,退行星系之间产生的简单物质会聚集在一起,形成恒星和新的星系,于是它们会成为锻造更重元素的不同的恒星熔炉。霍伊尔的工作对于大爆炸模型也是一种提升,否则我们就不能解释重元素如何从所有的氢和氦中产生,而后者则是在宇宙诞生之初就立即生成的。
1700927079
1700927080
乍一看,核合成问题的解决现在可以看成是两个敌对的宇宙学阵营打了个平手。毕竟,无论是大爆炸还是稳恒态模型都可以借助于同样的恒星演化过程来解释重元素的合成。但事实上,大爆炸已经成为两款模型中的强者,因为对于轻元素如氦的产生,只有大爆炸模型能圆满解释它们的丰度。
1700927081
1700927082
氦是宇宙中丰度排行第二的元素,也是仅次于氢的最轻元素。恒星将氢转变成氦,只是这个过程非常缓慢,因此从大爆炸的观点看,恒星不可能说明今天宇宙中存在的大量的氦。然而,伽莫夫、阿尔弗和赫尔曼已经证明,如果在大爆炸之后瞬间就完成了氢到氦的聚变,那么今天宇宙中的氦的丰度就可以得到说明。大爆炸模型的最新计算结果表明,氦应该占到宇宙中所有原子的10%,这个估计非常接近于基于观察的最新估计,因此理论和观测是一致的。
1700927083
1700927084
相比之下,稳恒态模型却不能解释氦的丰度。因此,从重元素的核合成这一点看,大爆炸和稳恒态不相上下,但只有大爆炸模型可以真正解释氦的核合成。
[
上一页 ]
[ :1.700927035e+09 ]
[
下一页 ]