1700931610
1700931611
学生:上帝呀!您指的是您教授给我们的所有有关统计力学、量子力学和数学概率论,所有这一切都意味着,如果它失效,您只是个人感到吃惊吗?
1700931612
1700931613
教授:噢,嗯……
1700931614
1700931615
如果我投掷100万次硬币,我可以确信我不会得到所有的字面。我不是一个赌徒,但我如此肯定,以至于我可以用我的生命和灵魂来打赌。我全部豁出去了,以一年的薪水来打赌。我完全肯定概率论中的大数定律不会失效,使我抵御风险。所有科学都基于它。但是我无法证明它,也不是真正地知道它为什么有效。这可能是爱因斯坦为什么说“上帝不掷骰子”的原因,而且很可能是。
1700931616
1700931617
我时常听物理学家们声称爱因斯坦不懂量子力学,因此为朴实的经典理论耗费时间,我非常怀疑这是真的。他反对量子力学的论点是极其奥妙的,他的那篇论文是物理学中最深刻的、引用达到最高的论文之一。[49]我猜想爱因斯坦所具有的某种不安,正是困扰那个反应迟钝的学生之处。难道对于真实性的终极理论,我们就没有比对实验结果的惊讶度更为具体的东西了吗?
1700931618
1700931619
我向你们展示了量子力学对仅有经典装备的大脑所产生的某些似非而是、几乎无逻辑的东西,不过我猜想你并不为此而完全满意。事实上,我希望你们不满意。一个实际的补救方法是沉浸在一本好的量子力学教材当中去几个月,并认真演算。只有非同寻常的怪才,或者是在一个极其特殊的家庭中长大的人,才能自然地具有新装备来理解量子力学。记住,连爱因斯坦最终也没能干扰克它。
1700931620
1700931622
第5章 更好的码尺
1700931623
1700931624
有一天在斯坦福大学的食堂里,我发现我教授的“医学预科”物理班的许多学生围在一张桌子上学习。我问道:“伙计们,你们正在学习什么呢?”他们的回答让我大吃一惊。原来他们正在背诵教科书封面上的常数表,背到最后一位小数点。[50]这个表包括如下的常数,除此之外还有其他二十几个。
1700931625
1700931626
h(普朗克常数)=6.626 068×10-34米2·千克/秒
1700931627
1700931628
阿伏伽德罗常数=6.0 221 415×1023
1700931629
1700931630
电子电荷=1.60 217 646×10-19库仑
1700931631
1700931632
c(光速)=299 792 458米/秒
1700931633
1700931634
质子的直径=1.724×10-15米
1700931635
1700931636
G(牛顿常数)=6.6742×10-11米3·秒-2·千克-1
1700931637
1700931638
医学预科生在他们的其他科学课上,一直在训练记忆大量的材料。他们都是很好的物理学生,却常常试图用学习生理学的方法来学习物理学。事实是物理学的记忆任务是非常少的。我怀疑许多物理学家能否粗略地说出这些常数值呢?
1700931639
1700931640
这引起了一个非常有趣的问题:为什么自然界的常数是这些棘手的数呢?为什么它们不能是像2或5甚至是1那样简单的数呢?为什么它们总是如此之小(普朗克常数、电子电荷)或是如此之大(阿伏伽德罗常数、光速)呢?
1700931641
1700931642
答案与物理学关系不大,但确与生物学密切相关。以阿伏伽德罗常数为例,它代表的是一定量气体中所含的分子个数。是多少气体呢?答案是19世纪早期的化学家可以轻易地用来工作的一定量气体;换句话来说,它可以被装在一个尺寸和人体大小相近的烧杯或其他容器中。阿伏伽德罗常数的真实数值和人体中分子数的关系要比它和物理学中深层次的原理的关系要密切得多。[51]
1700931643
1700931644
另外一个例子是质子的直径,为什么它是如此之小呢?答案再次与人体生理学有关。表中的数值都是用米给出的,然而1米是多少呢?米是英制码的公制版本,码大约是当一个人伸展开双臂时,从他的鼻子到指尖的距离,它很可能是测量布或绳子的有用单位。从质子直径之小,得到的教益是,需要很多质子才能形成人的胳膊。从基础物理的观点来看,这个数没有任何特别之处。
1700931645
1700931646
那么为什么我们不去改变单位,来使得这些数更容易记忆呢?实际上,我们已经这样做了。例如在天文学中,光年通常被用来作为距离的尺度(我讨厌听到光年被误用为时间的单位,就像有些人会说:“嘿,离我上次见到你已有几光年了”)。当以每秒光年为单位来表达光速时,它不是很大,事实上,它非常小,大约只是3×10-8。如果我们将时间的单位从秒改为年,会怎么样呢?由于光需要精确的一年才能走完一光年,因此光速是每年1光年。
1700931647
1700931648
光速是物理学中最基本的量之一,因此采用光速等于1的单位是有意义的。但诸如质子半径之类并不是非常基本的东西。质子是由夸克和其他粒子组成的复杂物体[52],那么为什么要给它们以优越的位置呢?从最深层和普适的物理定律来选择常数将会更有意义。如何决定这些定律是没有什么异议的。
1700931649
1700931650
·宇宙中任何物体的最大速度是光速c。这个定律不仅是关于光的定律,而且是有关自然界中一切事物的定律。
1700931651
1700931652
·宇宙中任何物体之间相互吸引,吸引力等于它们的质量与牛顿常数G的乘积。所有物体指的是一切物体,没有任何例外。
1700931653
1700931654
·对宇宙中任何物体而言,质量及位置与速度的不确定度的乘积永远不小于普朗克常数h。[53]
1700931655
1700931656
这里用楷体的词是为了强调这些定律的所有特性。它们适用于任意和任何事物,即所有的事物。事实上,自然界中的这三条定律堪称是普适的,远超过诸如描述质子这样的某种特定粒子性质的核物理定律。这似乎是平庸的,但物理结构中最深刻的见解之一,产生于1900年,普朗克认识到长度、质量和能量的单位可以作特定选择,以使三个基本常数c、G、h都等于1。
1700931657
1700931658
基本的标尺是普朗克长度,它远比米小,甚至比质子的半径还要小。事实上,它大约是质子半径的万亿亿分之一(在米制单位中,它大约是10-35)。即使质子被放大到太阳系的大小,普朗克长度也不会大过病毒的尺寸。普朗克因意识到这个无法想象的微小尺寸,必然在物理世界的任何终极理论中起到基本的作用,而获得了永久的声誉。他不知道物质的最小砖块究竟是什么,但他已猜到物质的最小砖块将是“普朗克尺寸”的。
1700931659
[
上一页 ]
[ :1.70093161e+09 ]
[
下一页 ]