打字猴:1.70093177e+09
1700931770
1700931771 ·爱因斯坦宣称质量是能量。当爱因斯坦说E=mc2时,他所指的是任何物体都有某种潜在的能量,如果它的质量以某种方式被改变,该能量可以被释放。例如,铀核最终会分裂成钍核和氦核。钍核与氦核的质量之和比最初的铀核的质量小一点儿。这微小的盈余质量会转化为钍核和氦核的动能,同时还产生一些光子。当原子静止下来,光子又被吸收时,盈余的能量便转变为热。
1700931772
1700931773 在能量的一切通常的形式当中,热量是最神秘的。什么是热量呢?它是类似于水一样的物质吗?或者它更像某种极为短暂的东西呢?在热的现代分子理论出现之前,早期物理学家和化学家认为它是一种行为像流体的物质。他们称它为燃素,想象它从热物体流到冷物体,使得热的物体变冷,冷的物体变热。事实上,我们现在仍然在说热流这个词。
1700931774
1700931775 但热量并不是一种新的物质,它只是能量的一种形式。将你自身缩小到分子的尺寸,在浴缸中环顾热水。你可以看到分子随机地运动着,熙熙攘攘地碰撞着,混乱地舞动着。让水冷却一下,再环顾你的四周:分子的运动缓慢多了。将它冷却到冰点,分子被固定在冰的晶体之中。不过即使在冰中,分子继续振动。只有当所有的能量被排走时,它们才停止运动(忽略量子零点振动)。就在这时,当水在-273.16℃或者在绝对零度时,温度再也不能进一步降低了。每个分子都被牢牢地固定在合适的位置,处于一个完美的晶格之中,所有混乱的、无序的运动都停止了。从热量到其他形式的能量守恒有时称为热力学第一定律。
1700931776
1700931777
1700931778
1700931779 将你的宝马车停在雨林中500年,是一个糟透的做法。当你再回来时,发现宝马车成了一堆铁锈。这就是熵的增加。如果你让这堆铁锈再呆上500年,你很确定铁锈不会还原,成为一辆能正常运转的宝马车。这就是热力学第二定律,简而言之:熵增加。每个人都谈论熵,包括诗人、哲学家和电脑怪才,但它真正是什么呢?为了回答这个问题,需要更好地考虑宝马车和一堆铁锈之间的差异。它们都是由大约1028个原子组成的集合体,主要是铁原子(在铁锈的情况下,还要加上氧原子)。它们聚合到一起形成一个正常运转的汽车的可能性是多少呢?需要很多专门的知识才能说明它如何不可能。显然,你非常可能得到的是一堆铁锈,而不是崭新的汽车,也不会是原来的那堆铁锈。如果你反复地将原子分开,再将它们放在一起,你最终也许会得到一辆汽车,但更多的可能是你将得到铁锈堆。为什么会这样呢?汽车或铁锈堆的特征差异在哪里呢?
1700931780
1700931781 如果你想象可以将原子集合在一起的所有可能的方式,那么大多数组装所得的更像铁锈堆,只有很小一部分像汽车。即使那样,如果你将车盖打开往里看,很可能又会发现一些铁锈,不过组装方式中的更小一部分,会形成一辆能正常运转的汽车。汽车的熵和一堆铁锈的熵,与我们能辨认出铁锈堆和汽车的数目有关。如果你将小汽车的原子打散后重新组合,你将更可能得到一堆铁锈,因为组合成铁锈的方式要比组合成小汽车的方式多得多。
1700931782
1700931783 这里还有另外一个例子。类人猿不停地敲击键盘,尽管砰砰直响,但几乎总是打出杂乱无章的符号。它能够打出一个语法正确的句子的情况是罕见的,例如类人猿偶然打出了“我想用分号来仲裁我的斜边”这样的句子。少之又少的情况是,它打出了像“克努特国王的下颌上有个疣”这样有意义的句子。[61]更进一步地说,如果你把一个有意义的句子的字母混乱后重新组合,就像拼图游戏中的牌一样,结果几乎是混乱的。原因是什么呢?组合20或30个字母得到没有意义的句子的方式要比有意义的句子的方式多得多。英语字母表中有26个字母,但存在更为简洁的书写体系,它只利用两个符号,点和短划。严格地说,有3个符号,是点、短划和空格,但我们总可以用点和短划的某种特殊序列来代替空格,以使空格不再出现。无论如何,我们可以忽略空格,下面是描述克努特和他的疣的莫尔斯电码,[62]总共有65个符号。
1700931784
1700931785
1700931786
1700931787
1700931788 由65个点或短划能组成多少不同的莫尔斯电码信息呢?你只要将2自身相乘65次,得到265,大约是千亿亿个不同的莫尔斯电码。
1700931789
1700931790 当信息用两个符号来编码时,这两个符号可以是点和短划、1和0,或者是其他一对,这些符号称为比特。因此,“克努特国王的下颌上有个疣”在莫尔斯电码下是一个65比特的信息。如果你想阅读本书的剩余部分,记住比特这个专业术语的定义是一个好主意,它的意思和你说的“我要拿一点儿咖啡到办公室”不同。比特是单个、不可分的信息单位,就像莫尔斯电码中的点和短划。
1700931791
1700931792 为什么我们要如此费力,将信息缩减到用点和短划,或者是0和1来描述呢?为什么不用序列0 1 2 3 4 5 6 7 8 9或者直接使用字母表中的字母呢?理由很简单,这样将使得信息更容易阅读,而且只需要更小的空间。
1700931793
1700931794 问题的关键是字母表中的字母(或者是10个通常的数字)是人类构建的,我们早已学习认识它们,并存储在我们的记忆中。但每个字母或数字本身,已经有大量的信息了,例如,字母A和B,或者是数字5和8之间,存在着错综复杂的差异。电报员和计算机科学家只依赖最简单的数学规则,他们更倾向于,事实上几乎被迫使用点和短划,或1和0的二进制码。事实上,为了给生存在遥远的恒星系上的非人类文明发送信息,卡尔·萨根(Carl Sagan)设计了一种采用二进制码的系统。[63]
1700931795
1700931796 我们回到克努特国王。这个65比特的信息有多少是有条理的句子呢?我真的不知道,可能有几十亿吧。但是无论有多少,它只有265当中难以想象的小的一部分。因此几乎确定的是,如果你取“克努特国王下颌上有个疣”中的65比特或是27个字母,搅乱它们的结果得到的将是乱语。不考虑空格,下面是我用斯克莱勃牌所得到的结果:[64]
1700931797
1700931798 H T K I D G E N C U O N N H T S R N I S A W A C H A I
1700931799
1700931800 假定你每次只把字母少许混乱一下。句子会逐渐丢失它的连贯性。“克努特国王有个疣下颌上”依然是可识别的。“克努特国王个有疣颌下上”同样也是。然而字母会逐渐变成一堆混乱的、没有意义的字母。有如此多的无意义的组合,以至于通向乱语的趋势是不可避免的。
1700931801
1700931802 现在我可以给出熵的定义了。熵是排列数目的测度,遵从某种特定的、可识别的判据。如果判据是存在65比特,那么排列的数目是265个。
1700931803
1700931804 不过在265比特的情况下,熵不是排列数,它恰好是65,也就是你将2相乘得到排列数的次数。数字2必须相乘起来得到给定数的数学术语称为它的对数。[65]于是,65是265的对数。因此,熵是排列数的对数。
1700931805
1700931806 在265种可能性当中,实际上只有一小部分有意义的句子。我们猜想有10亿个,为了得到10亿这个数,你必须将大约30个因子2相乘在一起。换句话说,10亿大约是230,或者等价地说,30是10亿的对数。因此得出结论,有意义的句子的熵大约只是30,远小于65。无意义的符号的混乱排列,比表述连贯句子的熵大得多。当你弄乱字母时,熵增加,这实在没有什么奇怪的。
1700931807
1700931808 假设宝马公司极度地提高了质量控制,从生产线上生产的汽车彼此完全相同。换句话说,假设有且只有一种原子排列才被认为是真正的宝马,那么它的熵是多少呢?答案是零。当宝马从生产线出来时,任何细节都已经确定。不论何时你确定了一种排列,就完全没有了熵。
1700931809
1700931810 热力学第二定律规定熵增加,它仅是以一种方式说明:随着时间的增长,我们趋向于失去细节。想象我们将一小滴墨汁放到一壶热水中。一开始,我们精确地知道墨汁的位置在哪里。墨汁的可能组态数目不是太大。但当我们看到墨汁扩散到水中时,关于单个墨汁分子的位置,我们开始知道得越来越少。我们所看到的是一个均匀的、浅灰色的一壶水,相应的排列数目已经变得非常大。我们可以耐心地等待,然而我们不会看到墨汁分子重新集聚到一起形成一滴墨汁。熵增加了,这就是热力学第二定律,事物趋向于令人乏味的均匀性。
1700931811
1700931812 这里还有另外一个例子,一个装满热水的浴缸。我们对缸中的水,了解了多少呢?假定它停在浴缸中的时间足够长,没有可观测的运动。我们可以测量缸中水的量(50加仑),也可以测量它的温度(40℃)。但是缸中充满了水分子,对于给定的条件,也就是50加仑(1加仑约4.55升)40℃的水,相对应的水分子的排列方式显然有很多。如果我们可以精确地测量每个原子,那么将可以知道得更多。
1700931813
1700931814 熵是不可观测的细节中所隐藏的信息的量度。因此,熵是隐藏着的信息。在大多数情形下,信息是隐藏的,因为它所涉及的东西太小而无法观测到,太多而无法跟踪。在洗澡水的情形中,细节便是浴缸中千千万万个水分子的位置和运动。
1700931815
1700931816
1700931817
1700931818
1700931819 晶格
[ 上一页 ]  [ :1.70093177e+09 ]  [ 下一页 ]