1700938540
1700938541
火星表面的平均大气压强仅为大约700帕斯卡(比地球上的1%还小),但它随着高度的变化而变化,在盆地的最深处可高达900帕斯卡,而在奥林匹斯山的顶端却只有100帕斯卡。但是它也足以支持偶尔席卷火星数十天之久的飓风和大风暴。火星那层薄薄的大气层虽然也能制造温室效应,但也只能提高其表面温度5摄氏度,比我们所知道的金星和地球的表面温度少得多。
1700938542
1700938543
1976年,“海盗”号探测器接近火星,它发现火星的两极覆盖的物质主要是干冰,而不是积雪,因此否定了火星表面存在水的猜想(科学家们现在相信,干冰层的下面可能有冰水层)。那么,火星的四季是怎么形成的呢?当火星的一半球上春季渐过的时候,白色的极冠就逐渐减缩,这一半球的黑暗地方就更显明、绿色更重。当夏季渐过而极冠完全或差不多完全化去时,这些黑暗地方就很显然地衰落而变成褐色。关于这种季候变迁的早期看法是说由于植物造成的——在火星春季植物开始茂盛,而秋季来临就又死去。当然这种说法已被证明是错误的。火星上看似季候变迁的现象根本不是植物的表现。那究竟是什么原因呢?
1700938544
1700938545
1700938546
1700938547
1700938548
图39 火星北极地区
1700938549
1700938550
科学家们开始把注意力集中到火星表面的土壤上。或许火星表层土壤是由粉红色的类似长石的矿物构成的,或许是由一种地球上所没有的矿物所构成的?有人推测,火星表层土壤是由一种性质类似塑料的低价碳氧化物所构成。美国普林斯顿大学的地质学家迪特·哈格雷夫斯认为火星的表层土壤是由绿高岭石构成。千百万年前火星上的火成岩与火星上一度存在的山相互作用,形成了一层绿高岭石外壳。当时不断有大量陨石穿过薄薄的二氧化碳大气层落在火星表面,陨石落下时的巨大冲击产生了足够的热量,使火星表面某些区域的绿高岭石转变为红色的磁性矿物;而随后落下的陨石又将这些红色的磁性矿物击碎为细小的红色尘土,随风四散,分布到整个火星表面,从而使火星呈红色的外观。
1700938551
1700938552
火星的卫星
1700938553
1700938554
火星的两颗卫星是1877年霍尔(Hall)在海军天文台发现的。以前的观测未曾见到它们,是因为这两颗卫星异常地渺小。大概从没有人想到过卫星会那样小,因此也没有人费神用大望远镜去细心寻觅。可是发现以后它们却绝不是难以看见的东西了。当然对它们观测的难易程度是要依靠火星在轨道中的位置以及相对我们地球的方位所决定的。在火星接近冲位的时候,有三四个月甚至六个月(依情形而定)的时间可以观测它们。在近日点附近的冲时,甚至可以用直径不到30厘米的望远镜看见它们。究竟看出多么小,是要依观测者的技术和从眼中消去火星光的努力而定的。大致说来,一架直径30厘米至45厘米的望远镜是必需的。看它们的困难完全因火星的光辉而起。如果能将这光辉除去,从更小得多的望远镜中也无疑是可以看见的了。因为这种光辉的缘故,外层的一颗较容易看见——虽然内层的那颗更为明亮。
1700938555
1700938556
霍尔把外层的卫星叫做“火卫二”(Deimos),内层那颗叫做“火卫一”(Phobos),这两个都是古神话中战神(Mars)的侍从。火卫一有一个特点:它与火星之间的距离是太阳系中所有的卫星与其主星的距离中最短的,从火星表面算起只有6 000千米,它绕这颗行星旋转一周只用7小时39分,这比火星绕轴自转一次的时间的1/3还少。因此,在火星上看来,最近的“月亮”出于西方而没于东方。
1700938557
1700938558
火卫二的公转期间是30小时18分。这种迅速运动的结果便是在它一起一落之间要过去差不多两天。
1700938559
1700938560
火卫一离火星表面只有6 000千米。如果我们未来的火星移民中有业余天文学家,那这一定是他们最有兴趣的对象。
1700938561
1700938562
1700938563
1700938564
1700938565
图40 火卫一
1700938566
1700938567
在大小方面说来,这两位是我们在太阳系中看得见的最小的东西了(除了也许还有更暗弱的小行星)。光度的推测告诉我们火卫二的直径是8千米,火卫一的直径是16千米。我们所见的它们的大小和从纽约望波士顿空中悬的一颗苹果差不多了。
1700938568
1700938569
这两颗卫星的最大的用处是使天文学家能够借以研究出火星的准确的质量,最终证明了其质量只有地球质量的1/9。这是怎样得来的,我们将在后面论及行星质量的那一章中叙述。
1700938570
1700938572
第五章 小行星群
1700938573
1700938574
太阳系中火星和木星轨道间有一个巨大的空隙。在行星距离都已准确测定后,当然要引起天文学家的注意了。当波德发表他的定律时,这就成了惹人注意的事件。是真的原有这空隙,还是因为填补这空隙的行星渺小得未被我们注意到呢?
1700938575
1700938576
这问题由意大利天文学家皮亚齐(Piazzi)解决了。他有一座小天文台在西西里(Sicily)的巴勒莫(Palermo)。他是一个热心的天文观测者,对于他的望远镜可以确定的恒星,他制作了一个恒星位置表。在1801年1月1日,他为新世纪行了开幕礼,在原先空无一物的地方发现了一颗星。这颗星不久就被证明了是寻觅了好久的行星。这颗星得到了个名字叫谷神星(Ceres)。
1700938577
1700938578
那时引起惊异的是,这颗行星竟然那样渺小,当知道了它的轨道以后,又发现其离心率很大。可是新的发现不久便来了。在这新行星被发现后还未完成一周公转时,不来梅(Bremen)的医生奥尔伯(Olbers)常利用闲暇时间作天文观测及研究,这时发现了在与前者同一天区内运转的另一行星。代替那一颗大行星的,竟然有了这两颗小行星。于是他提出意见,认为这些也许是一个行星的碎片,而假如真是这样,一定还可以发现许多。这个猜测的后半部分已经被证明是真实无疑了。在接着到来的3年中,又发现了两颗,一共是4颗小行星了。
1700938579
1700938580
这样过了约有40年。1845年,德国观测者亨克(Hencke)发现了第五颗。第二年加上了第六颗,于是开始了一连串不息的发现,一年一年增加下来,现在已经超过两万颗了。
1700938581
1700938582
猎取小行星
1700938583
1700938584
直到1890年这些天体的发现都是由于少数的观测者,他们特别注意去寻觅捕获这些小星,正如同猎者捕兽一样。他们也可以说是安置了陷阱,把黄道附近的天空小块天区的星画出图来,记得清楚了,再去守候那自投罗网的闯入者。只要出现了一个,这就是一颗小行星,于是猎者将它放进他的笼中。
1700938585
1700938586
约在1890年人们才发现摄影术是找到这些东西的更容易更有效的方法。天文学家把望远镜对准天空,开动定时装置,用较长的曝光时间(也许是半小时左右)为星摄影。真恒星一定在底片上现为小圆点,但假如碰巧行星在内,就一定会运动,它的影像就是一条短线而不是圆点了。天文学家用不着搜索天空只消搜索照片了,这工作容易得多,因为一颗行星可以从长尾巴上立刻认出。海德堡(Heidelberg)的沃尔夫(Max Wolf)用这个方法发现了500多颗小行星。
1700938587
1700938588
新近发现的小行星大半都是极暗弱的,而数目也好像随着暗弱的程度增长。平常推测有一万颗是在我们望远镜所及的范围以内。这些物体中的较大的也小得只能在平常望远镜中看成星似的点子,而它们的圆面即使用最有力的工具也不容易看出来。谷神星最大,直径有770千米。约有12颗直径超出160千米。最小的只能由其光度粗略地推算其大小了。它们的直径大概有32千米到48千米光景。
1700938589
[
上一页 ]
[ :1.70093854e+09 ]
[
下一页 ]