1700947828
1700947829
图2-14
1700947830
1700947831
由于重物作圆周运动,所以按照(2.17)式,它的加速度的径向分量为
1700947832
1700947833
1700947834
1700947835
1700947836
重物垂直方向的加速度是它的径向分量及法向分量之和(见图2-14b)。
1700947837
1700947838
再次利用相似三角形,我们得到重物垂直方向的加速度:
1700947839
1700947840
1700947841
1700947842
1700947843
B 利用三角学求重物加速度
1700947844
1700947845
1700947846
由于重物沿半径为 的圆弧运动,所以它的运动方程可以用杆子与地面的夹角来表示(见图2-15):
1700947847
1700947848
1700947849
1700947850
1700947851
1700947852
1700947853
1700947854
图2-15
1700947855
1700947856
1700947857
1700947858
1700947859
1700947860
重物的水平速率为1m/s(滚轴速率的一半)。所以x =t , ,以及 ,垂直方向的加速度可以由y 对t 两次微商算出。但是首先,由于 ,所以
1700947861
1700947862
1700947863
1700947864
1700947865
因此
1700947866
1700947867
1700947868
1700947869
1700947870
1700947871
当x =t =0.3时,得y =0.4,sinθ =0.8 。于是垂直方向加速度的量值为
1700947872
1700947873
1700947874
1700947875
1700947876
C 利用转矩和角动量求作用在重物上的力
1700947877
[
上一页 ]
[ :1.700947828e+09 ]
[
下一页 ]