1700959359
1700959360
好,演员到齐。那么,好戏也该上演了。
1700959361
1700959362
(1) 就是如今的洪堡大学。
1700959363
1700959364
(2) 实际上,准确来说,瑞利—金斯公式的完整形式是到了1905年才最终总结成型的。
1700959365
1700959366
(3) 1894年,在普朗克还没有了解到维恩的工作的时候,他就已经对这一领域开始了考察。
1700959367
1700959368
1700959369
(4) 对于长波,爱好数学的读者只需简单地把 按照级数展开一级便可得到正比关系。对于短波,只需忽略那个-1就自然退化为维恩公式。
1700959370
1700959371
(5) 见普朗克1931年给R. W. Wood的信。
1700959372
1700959373
(6) 至少在英国是如此。
1700959374
1700959375
1700959376
1700959377
1700959379
上帝掷骰子吗?:量子物理史话(升级版) 3 Falling Fireball 火流星
1700959380
1700959382
Part. 1
1700959383
1700959384
在量子初生的那些日子里,物理学的境遇并没有得到明显改善。这个叛逆的小精灵被它的主人所抛弃,不得不在荒野中颠沛流离,积蓄力量以等待让世界震惊的那一天。在这段长达四年多的惨淡岁月里,人们带着一种鸵鸟心态来使用普朗克的公式,却掩耳盗铃般地不去追究那公式背后的意义。然而在他们的头上,浓厚的乌云仍然驱之不散,反而越来越逼人,一场荡涤世界的暴雨终究不可避免。
1700959385
1700959386
而预示这种巨变到来的,如同往常一样,是一道劈开天地的闪电。在混沌中,电火花擦出了耀眼的亮光,代表了永恒不变的希望。光和电这两种令神祇也敬畏的力量纠缠在一起,瞬间开辟出一整个新时代。
1700959387
1700959388
说到这里,我们还是要不厌其烦地回到第一章的开头,再去看一眼赫兹那个意义非凡的实验。正如我们已经提到过的那样,赫兹接收器上电火花的爆跃,证实了电磁波的存在,但他同时也发现,一旦有光照射到那个缺口上,电火花便会出现得容易一些。
1700959389
1700959390
赫兹在论文里对这个现象进行了描述,但没有深究其中的原因。在那个激动人心的伟大时代,要做的事情太多了,而且赫兹英年早逝,他也没有闲暇来追究每一个遇到的问题。但是别人随即在这个方面进行了深入的研究(1) ,不久事实就很清楚了。原来是这样的:当光照射到金属上的时候,会从它的表面打出电子来。原本束缚在金属表面原子里的电子,不知是什么原因,暴露在一定光线之下的时候,便如同惊弓之鸟纷纷往外逃窜,就像见不得光线的吸血鬼家族。对于光与电之间存在的这种饶有趣味的现象,人们给它取了一个名字,叫作“光电效应”(Photoelectric Effect)。
1700959391
1700959392
1700959393
1700959394
1700959395
光电效应
1700959396
1700959397
很快,关于光电效应的一系列实验就在各个实验室被验证。虽然在当时来说,这些实验都是非常粗糙和原始的,但种种结果依然都表明了光和电现象之间的一些基本性质。人们不久便知道了两个基本事实:首先,对于某种特定的金属来说,光是否能够从它的表面打击出电子来,这只和光的频率有关。频率高的光线(比如紫外线)便能够打出能量较高的电子,而频率低的光(比如红光、黄光)则一个电子也打不出来。其次,能否打击出电子,和光的强度无关。再弱的紫外线也能够打击出金属表面的电子,而再强的红光也无法做到这一点。增加光线的强度,能够做到的只是增加打击出电子的数量。比如强烈的紫光相对微弱的紫光来说,可以从金属表面打击出更多的电子来。
1700959398
1700959399
总而言之,对于特定的金属,能不能打出电子,由光的频率说了算。而打出多少电子,则由光的强度说了算。
1700959400
1700959401
1700959402
1700959403
1700959404
猎兔人的奇遇
1700959405
1700959406
但科学家们很快就发现,他们陷入了一个巨大的困惑中。因为……这个现象没有道理,它似乎不应该是这样的啊。
1700959407
1700959408
我们都已经知道,光是一种波动。对于波动来说,波的强度便代表了它的能量。我们都很容易理解,电子是被某种能量束缚在金属内部的,如果外部给予的能量不够,便不足以将电子打击出来。但是按理说,如果我们增加光波的强度,那便是增加它的能量啊,为什么对于红光来说,再强烈的光线都无法打击出哪怕是一个电子来呢?而频率,频率是什么东西呢?无非是波振动的频繁程度而已。如果频率高的话,便是说波振动得频繁一点,那么按理说频繁振动的光波应该打击出更多数量的电子才对啊。然而所有的实验都指向相反的方向:光的频率,而不是强度,决定它能否从金属表面打出电子来;光的强度,而不是频率,则决定打出电子的数目。这不是开玩笑吗?
[
上一页 ]
[ :1.700959359e+09 ]
[
下一页 ]