1700959534
上帝造了光,爱因斯坦指出了什么是光,而康普顿,则第一个在真正意义上“看到”了这光。
1700959535
1700959536
“第三次波粒战争”全面爆发了。卷土重来的微粒军团装备了最先进的武器:光电效应和康普顿效应。这两门大炮威力无穷,令波动守军难以抵挡,节节败退。但是,波动方面军近百年苦心经营的阵地毕竟不是那么容易突破的,麦克斯韦理论和整个经典物理体系的强大后援使得它仍然立于不败之地。波动的拥护者们很快便清楚地意识到,不能再后退了,因为身后就是莫斯科!波动理论的全面失守将意味着麦克斯韦电磁体系的崩溃,但至少现在,微粒这一雄心勃勃的计划还难以实现。
1700959537
1700959538
波动在稳住了阵脚之后,迅速地重新评估了自己的力量。虽然在光电问题上它无能为力,但当初它赖以建国的那些王牌武器却依然没有生锈和失效,仍然有着强大的杀伤力。微粒的复兴尽管来得迅猛,但终究缺乏深度,它甚至不得不依靠从波动那里缴获来的军火来作战。比如我们已经看到的光电效应,对于光量子理论的验证牵涉频率和波长的测定,而这却仍然要靠光的干涉现象来实现。波动的立国之父托马斯·杨,他的精神是如此伟大,以致在身后百年仍然光耀着波动的战旗,震慑一切反对力量。在每一所中学的实验室里,通过两道狭缝的光仍然不依不饶地显示出明暗相间的干涉条纹来,不容置疑地向世人表明它的波动性。菲涅尔的论文虽然已经在图书馆里蒙上了灰尘,但任何人只要有兴趣,仍然可以重复他的实验,来确认泊松亮斑的存在。麦克斯韦芳华绝代的方程组仍然在每天给出预言,而电磁波也仍然温顺地按照那个优美的预言以30万公里每秒的速度行动,既没有快一点,也没有慢一点。
1700959539
1700959540
战局很快就陷入僵持,双方都屯兵于自己得心应手的阵地之内,谁也无力去占领对方的地盘。光子一陷入干涉的沼泽,便显得笨拙而无法自拔;光波一进入光电的丛林,也变得迷茫而不知所措。粒子还是波?在人类文明达到高峰的20世纪,却对宇宙中最古老的现象束手无策。
1700959541
1700959542
不过,还是让我们以后再来关注微粒和波动即将爆发的这场戏剧性的总决战。现在,按照这次旅行的时间顺序安排,先让这两支军队对垒一阵子,我们暂时回到故事的主线,也就是20世纪的第一个十年那里去。自从1905年爱因斯坦提出他的光量子概念后,量子这个新生力量终于开始被人逐渐重视,越来越多有关这一课题的论文被发表出来。普朗克的黑体公式和爱因斯坦的光电效应理论只不过是它占领的两个重要前沿阵地,而在许多其他问题,比如晶体的晶格结构,阳极射线的多普勒效应,气体分子的振动,X射线辐射等上面,它也都很快就令人刮目相看。在这样一种微妙的形势下,德国物理学家能斯特(Walther Nernst)敏锐地察觉到,物理学已经来到了一个关键时刻。量子火山的每一次躁动,都使得整个物理学大地在微微颤抖,似乎预示着不久后一次总爆发的来临。也许,“量子”这个不起眼的名词,终究注定要成为一个家喻户晓的名字。
1700959543
1700959544
1910年春天,能斯特到布鲁塞尔访问另一位化学家古德施密特(Robert Goldschmidt),并在那里邂逅了一位叫作索尔维(Ernest Solvay)的人。索尔维一直对化学和物理深感兴趣,可惜当年因病错过了大学。他后来发明了一种制造苏打的新方法,并靠此发了财。虽然自己已经错过了投身于科学的青春年华,不过索尔维仍然对此非常关心。他向能斯特提议说,自己可以慷慨解囊,赞助一个全球性的科学会议,让普朗克、洛伦兹、爱因斯坦这样出色的物理学家能够会聚一堂,讨论最前沿的科学问题。能斯特又惊又喜:这不正是一个最好的机会,可以让物理学家们认真地交流一下对量子和辐射问题的看法吗?于是两人一拍即合,能斯特随即为这件事忙碌地张罗起来。
1700959545
1700959546
1911年10月30日,第一届索尔维会议正式在比利时布鲁塞尔召开。24位最杰出的物理学家参加了会议,并在量子理论、气体运动理论以及辐射现象等课题上进行了讨论。遗憾的是,会议只有短短5天,物理学家们并没有取得任何突破性的进展。量子究竟意味着什么?理论背后隐藏着什么?普朗克常数h究竟将把我们带向何方?没有人确切地知道答案。爱因斯坦在会后写给洛伦兹的信里说:“‘h重症’看上去更加病入膏肓了。”
1700959547
1700959548
但不可否认的是,这仍然是量子发展史上的一次重大事件,因为量子问题终于在这次会议之后被推到了历史的最前沿,成为时代潮头上的一个焦点。人们终于发现,他们面对的是一个巨大的、扑朔迷离的难题。不管是光,还是热辐射,经典物理面对的都是一个难以逾越的困境。
1700959549
1700959550
在那些出席会议的人中,有一位叫作恩内斯特·卢瑟福(Ernest Rutherford)。他也许不知道,自己回英国后很快就会遇上一位来自丹麦的青年,从而在自己的学生名单上添加一颗最耀眼的超级巨星。也没人注意到大会的一位秘书,来自法国的莫里斯·德布罗意(Maurice de Broglie)公爵。他将把讨论和报告的记录带回家中,而偏巧,他有一位聪明绝顶的弟弟。对于爱因斯坦来说,他更不会想到,这个所谓的“h重症”将成为困扰他终生的最大谜题。1911年的索尔维会议仅仅是一个开始而已,未来还会有更多的索尔维会议,在历史上绘成一幅壮丽而雄奇的画卷,记录下量子论最富有传奇色彩的那一段故事。1911年的这次会议像是一个路标,历史的众多明暗伏线在这里交错汇聚,然后厘清出几条主脉,浩浩荡荡地发展下去。爱因斯坦的朋友贝索(Michele Besso)后来把1911年的会议称为一次“巫师盛会”(8) ,也许,这真的是量子魔法师在炫技前所念的最后的神奇咒语!
1700959551
1700959552
1700959553
1700959554
1700959555
1911年索尔维会议
1700959556
1700959557
现在,各位观众,就让我们把握住会议留给我们的那条线索,一起去看看量子魔法是怎样影响了实实在在的物质―原子核和电子的。我们的历史长镜头从欧洲大陆转回不列颠岛,来自丹麦的王子粉墨登场。在他的头上,一颗大大的火流星划过这阴云密布的天空,虽然只是一闪即逝,但却在地上点燃了燎原大火,照亮了无边的黑暗。
1700959558
1700959560
Part. 4
1700959561
1700959562
1911年9月,26岁的丹麦小伙子尼尔斯·玻尔渡过英吉利海峡,踏上了不列颠的土地。年轻的玻尔不会想到,32年后,他还要再一次来到这个岛上,却是藏在一架蚊式轰炸机的弹仓里,面临高空缺氧的考验和随时被丢进大海里的风险,九死一生后才到达目的地。那一次,是丘吉尔首相亲自签署命令,从纳粹的手中转移了这位原子物理界的泰山北斗,使得盟军在原子弹的竞争方面成功地削弱了德国的优势。这也成了玻尔一生中最富有传奇色彩、为人所津津乐道的一段经历。有些故事书甚至绘声绘色地描述说,当飞行员最终打开舱门时,玻尔还茫然不觉,沉浸在专注的物理思考中物我两忘。当然事实上玻尔并没有这样英勇,因为缺氧,他当时已经奄奄一息,差一点就送了命。
1700959563
1700959564
不过我们还是回到1911年,那时玻尔还只是一个有着远大志向和梦想,却默默无闻的青年。他走在剑桥的校园里,想象当年牛顿和麦克斯韦在这里走过的情形,欢欣鼓舞得像一个孩子。在草草地安定下来之后,玻尔做的第一件事情就是去拜访大名鼎鼎的J.J.汤姆逊,后者是当时富有盛名的物理学家,卡文迪许实验室的负责人,电子的发现者,诺贝尔奖得主。汤姆逊十分热情地接待了玻尔,虽然玻尔的英语烂得可以,但两人还是谈了好一阵子。汤姆逊收下了玻尔的论文,并把它放在自己的办公桌上。
1700959565
1700959566
1700959567
1700959568
1700959569
玻尔Niels Henrik David Bohr 1885—1962
1700959570
1700959571
一切看来都十分顺利,但可怜的玻尔并不知道,在漠视学生的论文这一点上,汤姆逊是“恶名昭著”的。事实上,玻尔的论文一直被闲置在桌子上,汤姆逊根本没有看过一个字。另有一种说法是,当时不谙世故的玻尔老实不客气,当面指出了汤姆逊的著作《气体中的导电》里的一些错误,结果惹恼了这位高傲的英国人。不管怎样,剑桥对于玻尔来说,实在不是一个让人激动的地方,他自己的研究也进行得不是十分顺利。总而言之,除了在一个足球队里大显身手之外,这所举世闻名的大学似乎没有什么让玻尔觉得值得一提的事。失望之下,玻尔决定寻求一些改变。一次偶然的机会,玻尔到曼彻斯特拜访他父亲的一位朋友Lorrain Smith,后者将他介绍给了刚从第一届索尔维会议上归来的卢瑟福。
1700959572
1700959573
也许是命中注定的缘分,也许是一生难求的巧合,又或许那个“巫师盛会”的魔力还没有完全散尽。总之,玻尔和卢瑟福之间立刻就产生了神秘的化学反应。在促膝长谈之后,两人都觉得相见恨晚,卢瑟福很快就给了玻尔一个实验室的名额,而玻尔也很快就义无反顾地离开剑桥前往曼彻斯特。这座工业城市的天空虽然受到污染,但恩内斯特·卢瑟福的名字却使它看起来那样地金光闪耀。
1700959574
1700959575
说起来,卢瑟福也是J.J.汤姆逊的学生。这位出身于新西兰农场的科学家身上保持着农民那勤俭朴实的作风,对他的助手和学生永远是那样热情和关心,提供所有力所能及的帮助。再说,玻尔选择的时机真是再恰当不过了。1912年,那正是一个黎明的曙光就要来临,科学新的一页就要被书写的年份。人们已经站在了通向原子神秘内部世界的门槛上,只等玻尔来迈出这决定性的一步了。
1700959576
1700959577
这个故事还要从前一个世纪说起。1897年,J.J.汤姆逊在研究阴极射线的时候,发现了原子中电子的存在。这打破了从古希腊人那里流传下来的“原子不可分割”的理念,明确地向人们展示:原子是可以继续分割的,它有着自己的内部结构。那么,这个结构是怎么样的呢?汤姆逊那时完全缺乏实验证据,他于是展开自己的想象,勾勒出这样的图景:原子呈球状,带正电荷,而带负电荷的电子则一粒粒地“镶嵌”在这个圆球上。这样的一幅画面,史称“葡萄干布丁”模型,电子就像布丁上的葡萄干一样。
1700959578
1700959579
但是,1910年,卢瑟福和他的学生们在实验室里进行了一次名垂青史的实验。他们用α粒子(带正电的氦核)来轰击一张极薄的金箔,想通过散射来确认那个“葡萄干布丁”的大小和性质。这时候,极其不可思议的现象出现了:有少数α粒子的散射角度是如此之大,以至超过90度。对这个情况,卢瑟福自己描述得非常形象:“这就像你用十五英寸的炮弹向一张纸轰击,结果这炮弹却被反弹了回来,反而击中了你自己一样。”
1700959580
1700959581
卢瑟福发扬了亚里士多德前辈“吾爱吾师,但吾更爱真理”的优良品格,决定修改汤姆逊的葡萄干布丁模型。他认识到,α粒子被反弹回来,必定是因为它们和金箔原子中某种极为坚硬密实的核心发生了碰撞。这个核心应该是带正电,而且集中了原子的大部分质量。但是,从α粒子只有很少一部分出现大角度散射这一情况来看,那核心占据的地方是很小的,不到原子半径的万分之一。
1700959582
1700959583
[
上一页 ]
[ :1.700959534e+09 ]
[
下一页 ]