1700960476
薛定谔盯着波恩:“我们都相信科学的力量,在于它敢于直视一切事实,并毫不犹豫地去面对它、检验它、把握它,不管它是什么。何况,就算是潘多拉盒子,我们至少也还拥有盒底那最宝贵的东西,难道你忘了吗?”
1700960477
1700960478
“是的,那是希望。”波恩长出了一口气,“你说得对,不管是祸是福,我们至少还拥有希望。只有存在争论,物理学才拥有未来。”
1700960479
1700960480
“那么,你说这箱子里是……?”全场一片静默,人人都不敢出声。
1700960481
1700960482
波恩突然神秘地笑了:“我猜,这里面藏的是……”
1700960483
1700960484
“……骰子。”
1700960485
1700960487
Part. 4
1700960488
1700960489
骰子?骰子是什么东西?它应该出现在大富翁游戏里,应该出现在澳门和拉斯维加斯的赌场中,但是,物理学?不,那不是它应该来的地方。骰子代表了投机,代表了不确定,而物理学不是一门最严格、最精密、最不能容忍不确定的科学吗?
1700960490
1700960491
可以想象,当波恩于1926年7月将骰子带进物理学后,这引起了何等的轩然大波。围绕着这个核心解释所展开的争论激烈而尖锐,把物理学加热到了沸点。这个话题是如此具有争议性,很快就要引发20世纪物理史上最有名的一场大论战,而可怜的波恩一直要到整整28年后,才因为这一杰出的发现而获得诺贝尔奖―比他的学生们晚上许多。
1700960492
1700960493
不管怎么样,我们还是先来看看波恩都说了些什么。骰子,这才是薛定谔波函数ψ的解释,它代表的是一种随机、一种概率,而绝不是薛定谔本人所理解的电子电荷在空间中的实际分布。波恩争辩道,ψ,或者更准确一点,ψ的平方,代表了电子在某个地点出现的“概率”。电子本身不会像波那样扩展开去,但是它的出现概率则像一个波,严格地按照ψ的分布所展开。
1700960494
1700960495
1700960496
1700960497
1700960498
单电子双缝实验
1700960499
1700960500
我们来回忆一下电子或者光子的双缝干涉实验,这是电子波动性的最好证明。当电子穿过两道狭缝后,便在感应屏上组成了一个明暗相间的图案,展示了波峰和波谷的相互增强和抵消。但是,正如粒子派指出的那样,每次电子只会在屏上打出一个小点,只有当成群的电子穿过双缝后,才会逐渐组成整个图案。
1700960501
1700960502
现在让我们来做一个思维实验,想象我们有一台仪器,它每次只发射出一个电子。这个电子穿过双缝,打到感光屏上,激发出一个小亮点。那么对于这一个电子,我们可以说些什么呢?很明显,我们不能预言它组成类波的干涉条纹,因为一个电子只会留下一个点而已。事实上,对于这个电子将会出现在屏幕上的什么地方,我们是一点头绪都没有的,多次重复我们的实验,它有时出现在这里,有时出现在那里,完全不是一个确定的过程。
1700960503
1700960504
不过,我们经过大量的观察却可以发现,这个电子不是完全没有规律的:它在某些地方出现的可能性要大一些,在另一些地方则小一些。它出现频率高的地方,恰恰是波动所预言的干涉条纹的亮处,它出现频率低的地方则对应于暗处。现在我们可以理解为什么大量电子能组成干涉条纹了,因为虽然每一个电子的行为都是随机的,但这个随机分布的总的模式却是确定的,它就是一个干涉条纹的图案。这就像我们掷骰子,虽然每一个骰子掷下去,它的结果都是完全随机的,从1到6都有可能,但如果你投掷大量的骰子到地下,然后数一数每个点的数量,会发现1到6的结果差不多是平均的。
1700960505
1700960506
关键是,单个电子总是以一个点的面貌出现,它从来不会像薛定谔所说的那样,在屏幕上打出一整个图案来。只有大量电子接二连三地跟进,总的干涉图案才会逐渐出现。其中亮的地方也就是比较多的电子打中的地方,换句话说,就是单个电子比较容易出现的地方,暗的地带则正好相反。如果我们发现有九成的粒子聚集在亮带,只有一成的粒子在暗带,那么我们就可以预言,对于单个粒子来说,它有90%的可能性出现在亮带的区域,10%的可能性出现在暗带。但是,究竟出现在哪里,我们是无法确定的,我们只能预言概率而已。
1700960507
1700960508
嗯,我们只能预言概率而已。
1700960509
1700960510
但是,等等,我们怎么敢随便说出这种话来呢?这不是对古老的物理学的一种大不敬吗?从伽利略、牛顿以来,成千上万的先辈为这门科学呕心沥血,建筑起了这样宏伟的构筑,它的力量统治整个宇宙,从最大的星系到最小的原子,万事万物都在它的威力下毕恭毕敬地运转。任何巨大的或者细微的动作都逃不出它的力量。星系之间产生可怕的碰撞,释放出难以想象的光和热,并诞生数以亿计的新恒星;宇宙射线以惊人的高速穿越遥远的空间,见证亘古的时光;微小得看不见的分子们你推我搡,喧闹不停;地球庄严地围绕着太阳运转,它自己的自转轴同时以难以觉察的速度轻微地振动;坚硬的岩石随着时光流逝而逐渐风化;鸟儿扑动它的翅膀,借着气流一飞冲天。这一切的一切,不都是在物理定律的监视下一丝不苟地进行的吗?
1700960511
1700960512
更重要的是,物理学不仅能够解释过去和现在,它还能预言未来。我们的定律和方程能够毫不含糊地预测一颗炮弹的轨迹以及它降落的地点;我们能预言几千年后的日食,时刻准确到秒;给我一张电路图,多复杂都行,我能够说出它将做些什么;我们制造的机器乖乖地按照我们预先制订好的计划运行。事实上,对于任何一个系统,只要给我足够的初始信息,赋予我足够的运算能力,我能够推算出这个体系的一切历史,从它最初怎样开始运行,一直到它在遥远的未来的命运,一切都不是秘密。是的,一切系统,哪怕骰子也一样。告诉我骰子的大小、质量、质地、初速度、高度、角度、空气阻力、桌子的质地、摩擦系数,告诉我一切所需要的情报,那么只要我拥有足够的运算能力,我可以毫不迟疑地预先告诉你,这个骰子将会掷出几点来。
1700960513
1700960514
物理学统治整个宇宙,它的过去和未来,一切都尽在掌握。这已经成了物理学家心中深深的信仰。19世纪初,法国的大科学家拉普拉斯在用牛顿方程计算出了行星轨道后,把它展示给拿破仑看。拿破仑问道:“在你的理论中,上帝在哪儿呢?”拉普拉斯平静地回答:“陛下,我的理论不需要这个假设。”
1700960515
1700960516
是啊,上帝在物理学中能有什么位置呢?一切都是由物理定律来统治的,每一个分子都遵照物理定律来运行,如果说上帝有什么作用的话,他最多是在一开始推动了这个体系一下,让它得以开始运转罢了。在之后的漫长历史中,有没有上帝都是无关紧要的了,上帝被物理学赶出了舞台。
1700960517
1700960518
“我不需要上帝这个假设。”拉普拉斯站在拿破仑面前说。这可以算科学上最光辉、最荣耀的时刻之一了,它把无边的自豪和骄傲播撒到每一个科学家的心中。不仅不需要上帝,拉普拉斯想象,假如我们有一个妖精或一个大智者,或者任何拥有足够智慧的人物,假如他能够了解在某一刻,这个宇宙所有分子的运动情况的话,那么他就可以从正反两个方向推演,从而得出宇宙在任意时刻的状态。对于这样的智者来说,没有什么过去和未来的分别,一切都历历在目。宇宙从它出生的那一刹那开始,就坠入了一个预定的轨道,它严格地按照物理定律发展,没有任何岔路可以走,一直到遇见它那注定的命运为止。就像你出手投篮,那么这究竟是一个三分球,还是打中篮筐弹出,或者是一个“三不沾”,都在你出手的一刹那就决定了。之后我们所能做的,就是看着它按照写好的剧本发展而已。
1700960519
1700960520
1700960521
1700960522
1700960523
决定论
1700960524
1700960525
是的,科学家知道过去;是的,科学家明白现在;是的,科学家了解未来。只要掌握了定律,只要搜集足够多的情报,只要能够处理足够大的运算量,科学家就能如同上帝一般无所不知。整个宇宙只不过是一台精密的机器,它的每个零件都按照定律一丝不苟地运行。这种想法就是古典的、严格的决定论(determinism):宇宙从出生的一刹那起,就有一个确定的命运。我们现在无法了解它,只是因为我们所知道的信息太少而已。
[
上一页 ]
[ :1.700960476e+09 ]
[
下一页 ]