1700974670
1700974671
1700974672
1700974673
1700974674
(1)确定质点运动轨道并画图;
1700974675
1700974676
(2)计算t时刻质点运动速度v和加速度a.
1700974677
1700974678
解 (1)运动方程的分量式为
1700974679
1700974680
1700974681
1700974682
1700974683
前两式表明质点在xy平面上作半径为R、角速度为ω(周期T=2π/ω)的匀速圆周运动,后一式表明质点沿z轴作匀速直线运动,速率为u.两者结合,运动轨道如图1-25所示,是在半径为R的圆柱面上从Q点开始的一条螺旋线.此螺旋线从任一位置出发,每旋转一周,沿轴前行距离同为
1700974684
1700974685
1700974686
1700974687
1700974688
1700974689
1700974690
1700974691
图 1-25
1700974692
1700974693
故又称为等距螺旋线.等距螺旋线中的参量R和H,分别称为旋转圆半径和螺距.
1700974694
1700974695
(2)任意t时刻质点运动速度为
1700974696
1700974697
1700974698
1700974699
1700974700
前两个分量合成xy平面上匀速圆周运动的速度,再与z方向速度合成质点运动速度:
1700974701
1700974702
1700974703
1700974704
1700974705
任意t时刻加速度为
1700974706
1700974707
1700974708
1700974709
1700974710
即为匀速圆周运动的向心加速度:
1700974711
1700974712
1700974713
1700974714
1700974715
1.4.2 质点系和刚体的空间运动
1700974716
1700974717
若干个物体构成的系统,若每个物体都可近似处理为质点,系统便成为一个质点系.一个物体,各个点部位的运动差异不可忽略时,将它分解成一系列无穷小部位,每个小部位可处理为质点,物体便也成为一个质点系.力学中质点系是普适性的系统模型.质点系可以只包含一个质点,也可以包含多至无穷个质点.将直线运动、平面曲线运动归为空间曲线运动特例,各质点的运动均可统称为空间曲线运动,整体便构成质点系的空间运动.
1700974718
1700974719
每一质点在空间的自由运动,需用3个独立参量,例如x,y,z来确定,称有3个自由度.N个质点构成的质点系,若每个质点均可自由运动,则质点系的运动需用3N个独立参量,例如xi,yi,zi(i=1,2,…,N)来确定,称有3N个自由度.N越大,描述质点系的运动越困难.
[
上一页 ]
[ :1.70097467e+09 ]
[
下一页 ]