打字猴:1.70097493e+09
1700974930
1700974931
1700974932 返回途中,小船相对河岸速度为
1700974933
1700974934
1700974935
1700974936
1700974937 导出积分式
1700974938
1700974939
1700974940
1700974941
1700974942 即得返航轨迹方程:
1700974943
1700974944
1700974945
1700974946
1700974947 也是一条抛物线,如图1-33所示.回到此岸时,y=0,与出发点相距
1700974948
1700974949
1700974950
1700974951
1700974952 例11 半径R的圆环沿地面直线向右纯滚,转动角速度ω0为常量.以某时刻环心位置为原点,在地面系的竖直平面上设置极坐标系S,图1-34中半x轴代表的极轴方向水平朝右.同一时刻以环心位置为原点构建旋转极坐标系S′,极轴的初始方向也是水平朝右,S′系绕着过原点且垂直于极坐标平面的水平轴,相对S系顺时针方向旋转,角速度大小也是ω0.
1700974953
1700974954
1700974955
1700974956
1700974957 图 1-34
1700974958
1700974959 (1)确定环心在S′系中的轨迹曲线;
1700974960
1700974961 (2)说明圆环作为刚体,在S′系中是什么样的运动,并作图示意.
1700974962
1700974963 解 过S,S′系坐标原点,按右手系规则设置重合的水平z,z′轴,S′系相对于S系绕z轴匀速转动,角速度
1700974964
1700974965
1700974966
1700974967
1700974968 (1)S,S′系的极坐标量变换关系为
1700974969
1700974970
1700974971
1700974972
1700974973 环心在S系的运动方程为  r=ω0Rt, θ=0,
1700974974
1700974975 在S′系的运动方程便是   r′=ω0Rt, θ′=ω0t,
1700974976
1700974977 即得轨迹曲线方程:r′=Rθ′,是阿基米德螺线.
1700974978
1700974979 (2)圆环在S系中的运动可分解为随环心的平动和绕环心的转动,这一转动与S′系相对于S系的转动一致,故圆环在S′系中只有随环心的平动.运动示意参见图1-35,其中虚线为环心轨迹线,直径AB起着标志圆环在S′系中方位的作用.
[ 上一页 ]  [ :1.70097493e+09 ]  [ 下一页 ]