打字猴:1.700983958e+09
1700983958
1700983959 将细管体积流量
1700983960
1700983961
1700983962
1700983963
1700983964 代入,得
1700983965
1700983966
1700983967
1700983968
1700983969 dt期间该段流体动能增量dEk等效为1~1'部位流体移到2~2'部位后的动能增量,即有
1700983970
1700983971
1700983972
1700983973
1700983974 dt期间该段流体重力势能增量dEp等效为1~1'部位流体移到2~2'部位后的重力势能增量,即有
1700983975
1700983976
1700983977
1700983978
1700983979 由质点系功能关系dω=dEk+dEp,得
1700983980
1700983981
1700983982
1700983983
1700983984 由于细管中1,2位置是任取的,因此可以一般地表述成
1700983985
1700983986
1700983987
1700983988
1700983989 这就是伯努利方程,由伯努利(D. Bernouli,1700—1782)于1738年首先给出.
1700983990
1700983991 需要注意,一是对于不同的细流管,方程中的常量一般不相同.二是对于大流管,如果端面1各处h1,p1(严格或近似)相同,各处v1(严格或近似)相同且与面元垂直,端面2各处h2,p2(严格或近似)相同,各处v2(严格或近似)相同且与面元垂直,那么以式(6.20)表述的伯努利方程仍然成立.
1700983992
1700983993 伯努利方程可以解释流体流动中出现的若干现象,具有指导意义.
1700983994
1700983995 流管内高度差的影响可以略去时,(6.21)式中的ρgh项可以删去,简化成
1700983996
1700983997
1700983998
1700983999
1700984000 此式表明,流速大处压强小,流速小处压强大.结合连续性方程,可得这样的结论:流管截面积小处流速大,压强小;截面积大处流速小,压强大.
1700984001
1700984002 两船平行航行时以船为参考系(近似处理成惯性系),俯视的水流如图6-23所示.在图的中间部位水面下方取一流管,两船内侧A处截面积小、流速大、压强pA小,船前方B处截面积大、流速小、压强pB大.图中在两船外侧C处附近的流线几乎平行,流管远近截面积变化可略,C处压强pC与左侧远处压强相同.同理,B处左侧流线几乎平行,pB与左侧远处压强相同,便有
1700984003
1700984004
1700984005
1700984006
1700984007
[ 上一页 ]  [ :1.700983958e+09 ]  [ 下一页 ]