1700991898
1700991899
图C-4(b)中x0点的y值与其近邻相比为最小,称x0为极小值点.
1700991900
1700991901
综上所述,有
1700991902
1700991903
若y′(x0)=0,y″(x0)<0,则x0点是函数的一个极大值点;
1700991904
1700991905
若y′(x0)=0,y″(x0)>0,则x0点是函数的一个极小值点.
1700991906
1700991907
极大值点和极小值点合称为极值点.
1700991908
1700991909
需要指出,上面给出的是两种常见类型的极值点,还有其他类型的极值点.例如x0=0点分别是y=-x4和y=x4的极大值点和极小值点,它们都对应y′(x0)=0,y″(x0)=0,不属于上述两种类型的极值点.另一方面,对于y=-x3和y=x3,在x0=0点,虽然也有y′(x0)=0和y″(x0)=0,但x0=0点并不是它们的极值点,而是数学上称为拐点的点.这些方面内容的讨论,高等数学课程中会详细展开.
1700991910
1700991911
例8 找出y=Ax2+Bx+C和y=sinx的全部极值点.
1700991912
1700991913
解 对y=Ax2+Bx+C,由
1700991914
1700991915
y′=2Ax+B,y″=2A,
1700991916
1700991917
可知
1700991918
1700991919
x0=-B/2A,y′(x0)=0,y″(x0)=2A.
1700991920
1700991921
因此
1700991922
1700991923
若A>0,则y′(x0)=0,y″(x0)>0,x0=-B/2A为极小值点;
1700991924
1700991925
若A<0,则y″(x0)=0,y″(x0)<0,x0=-B/2A为极大值点.
1700991926
1700991927
对y=sinx,由
1700991928
1700991929
1700991930
1700991931
1700991932
可知
1700991933
1700991934
1700991935
1700991936
1700991937
是可能的极值点.将x0值代入到
1700991938
1700991939
1700991940
1700991941
1700991942
并将n分成2k与2k+1两组,其中k=0,±1,…,则有
1700991943
1700991944
1700991945
1700991946
1700991947
因此
[
上一页 ]
[ :1.700991898e+09 ]
[
下一页 ]