1700999110
1700999111
1.在任意多面体(由平面、直线和顶点组成的立体图形)中,其顶点数V、棱数E和面数F满足:
1700999112
1700999113
V–E+F= 2
1700999114
1700999115
例如,立方体有8个顶点、12条棱和6个面,满足V–E+F= 8 –12 + 6 = 2。
1700999116
1700999117
2.1 + 1 / 4 + 1 / 9 + 1 / 16 + 1 / 25 + … = π2/ 6
1700999118
1700999119
3.1 + 1 / 2 + 1 / 3 + 1 / 4 + 1 / 5 + …= ∞
1700999120
1700999121
4.0.999 99…= 1
1700999122
1700999123
5.计算n!近似值的斯特林公式:
1700999124
1700999125
1700999126
1700999127
1700999128
6.确定斐波那契数列的第n个数字的比内公式:
1700999129
1700999130
1700999131
1700999132
1700999133
1700999134
1700999135
1700999137
12堂魔力数学课 虚数i是-1的平方根
1700999138
1700999139
虚数i非常神秘,原因在于:
1700999140
1700999141
i2= – 1
1700999142
1700999143
第一次听说这个数字的神奇属性时,人们往往认为这是不可能的。一个数字自乘之后,积竟然为负数,这怎么可能呢?所有人都知道,02= 0,负数与自身的乘积必然是正数。但是,不要急于否定,想一想,你是不是也曾认为负数是不可能存在的(在几百年的时间里,数学界几乎都是这样认为的)?比0还小是什么意思?比没有还少,这怎么可能呢?最后,你把数字看成实数线(real line)上的“住户”,如下图所示,正数居住在0的右边,负数居住在0的左边。在理解i的含义时,我们也要跳出思维的“盒子”(或者说摆脱实数线的束缚)。只有这样,我们才会发现i具有实实在在的意义。
1700999144
1700999145
1700999146
1700999147
1700999148
实数线上没有虚数,虚数到底躲在哪里呢?
1700999149
1700999150
我们把i称为虚数。如果一个数字的平方是负数,我们就说这个数字是虚数。例如,虚数2i满足 (2i) (2i) = 4i2= – 4。对于虚数而言,代数运算的规则不变。例如:
1700999151
1700999152
3i+ 2i= 5i,3i– 2i= 1i=i,2i– 3i= –1i= –i,
1700999153
1700999154
再例如:
1700999155
1700999156
1700999157
3i×2i= 6i2= – 6,= 3/2
1700999158
1700999159
顺便告诉大家,我们要注意一个问题:–i的平方也是–1,因为 (–i) (–i) =i2= –1。实数与虚数相乘,会得到我们预期的结果,例如,3×2i= 6i。
[
上一页 ]
[ :1.70099911e+09 ]
[
下一页 ]