1701002941
1701002942
我在高中的微积分老师乔弗瑞先生把求解函数极值的问题讲解得十分生动。有一天,他几乎是蹦蹦跳跳地进了教室,告诉我们他在雪地里远足的故事。乔弗瑞先生说,因为风很大,把别处雪地上的雪全吹到了他面前的这块雪地上。他面前的这块雪地的积雪特别厚,所以在这块雪地上他只能慢慢地走;而远处的一块草地上则完全没有积雪,走起来应该很轻松。乔弗瑞先生问我们,在这样的情况下,一个远足的人到底应该怎么走才能以最快的速度从A点到达B点呢?
1701002943
1701002944
1701002945
1701002946
1701002947
一种选择是:因为在积雪深的地方走得慢,所以远足者应该尽快走出积雪深的部分,抄近路到草地。这种选择的劣势是,在草地上要走的路程会比较长。如下图所示。
1701002948
1701002949
1701002950
1701002951
1701002952
另一种选择是:沿直线从A点走到B点,因为两点之间直线最短。这种选择的行进总距离肯定最短,但是与上一种选择相比,在积雪中的路程加长了,而且在积雪里走路速度比较慢。这种选择是最优的吗?
1701002953
1701002954
1701002955
1701002956
1701002957
运用导数的知识,我可以求解出耗时最短的最优路径。这个最优路径介于上述两种选择之间,如下图所示。
1701002958
1701002959
1701002960
1701002961
1701002962
具体的求解过程主要有4个步骤。
1701002963
1701002964
第一步,我们应该意识到,从A点走到B点所花的时间(这是我们想要最小化的目标函数),取决于远足者由哪一点离开雪地步入草地,有无数个这样的点供他选择。那么,让我们把所有可以离开雪地进入草地的点都列入考虑范畴,作为我们的未知数。如何描述这个点的位置呢?我们设x为远足者在雪地里移动的总横向距离,这个变量完全可以描述出远足者从何处进入草地。
1701002965
1701002966
1701002967
1701002968
1701002969
当然,从A点走到B点的时间还取决于A点和B点的位置,以及远足者在雪地和草地上的步行速度,但这些参数在这道题目里都被视为已知。远足者唯一可以控制的变量,就是上图中的x。
1701002970
1701002971
第二步,对任何一个给定的x值,因为A点和B点的位置是已知的,我们可以算出步行者穿过雪地和草地走到B点所用的总时间。为了计算在雪地上行走的时间和在草地上行走的时间,我们要用到勾股定理,还要用到我们耳熟能详的一句口诀:“距离等于速度乘以时间”。把雪地上的行走时间和草地上的行走时间相加,就得到了远足者从A点走到B点所用的总时间T。显然,T是x的一个函数。
1701002972
1701002973
第三步,我们画出T随着x变化的函数图像。这个函数图像的最低点就是我们要找的最优解——在那一点,远足者可以花最短的时间从A点走到B点。
1701002974
1701002975
1701002976
1701002977
1701002978
第四步,为了找到这个最低点,我们要用到前面提到的那个性质:最大值和最小值处导数为零。让我们计算出T的导数,令这个导数等于零,然后解出导数为零时x的值。
1701002979
1701002980
这四步求解的过程包含了几何、代数,还有微积分中的多个求导公式。要把数学中的这些知识融会贯通,并不比流利地说一门外语简单,因此很多学生面对这样的题目会感到束手无策。
1701002981
1701002982
这道题目的结果是很有意思的,完全值得我们花上一番工夫。我们解出的最优路径服从所谓的“斯涅尔定律”,斯涅尔定律又称折射定律。有趣的是,不仅题目中的远足者服从斯涅尔定律,大自然也同样遵守着这条定律。
1701002983
1701002984
斯涅尔定律描述了光线从空气中射入水中时的弯曲情况。当明亮的阳光照进闪烁的游泳池中,斯涅尔定律便开始发挥作用。光在水中传播的速度比在空气中传播的速度慢,就像远足者在雪地上比在草地上走得慢一样。远足者为了节约时间而走弯路,光线射入水中的时候也会弯曲,从而使传播所需的时间最小化。同样,当光线从空气中射入玻璃或者塑料的时候也会发生弯曲的现象,比如光透过你的眼镜片时,就会有折射现象发生。
1701002985
1701002986
奇怪的是,光竟然如此“聪明”,它仿佛考察过了所有可能的路径,然后,精确地选择了其中耗时最短的最优路径。大自然似乎也懂得微积分(此处请播放《迷离时空》的主题曲)!
1701002987
1701002988
1701002989
1701002990
[
上一页 ]
[ :1.701002941e+09 ]
[
下一页 ]