打字猴:1.701008005e+09
1701008005
1701008006
1701008007
1701008008 ,使
1701008009
1701008010 这样椅子放稳问题可归结为如下命题。
1701008011
1701008012
1701008013
1701008014
1701008015
1701008016 设f(θ)、g(θ)是[0,2π]上θ的非负连续函数,若,有f(θ)g(θ)=0,且g(0)=0,f(0)>0,,,则,使f(θ0)=g(θ0)=0。
1701008017
1701008018 令h(θ)=f(θ)-g(θ),则:
1701008019
1701008020
1701008021
1701008022
1701008023
1701008024 再由f(θ),g(θ)的连续性,得到h(θ)是一个连续函数,从而h(θ)是上的连续函数。
1701008025
1701008026
1701008027
1701008028 由连续函数的中值定理:,使h(θ0)=0,即,使f(θ0)=g(θ0)。
1701008029
1701008030
1701008031 又因为,有f(θ)g(θ)=0,故:
1701008032
1701008033
1701008034
1701008035
1701008036 因此,至多旋转90°就可找到放稳点。
1701008037
1701008038 当然,对于四条脚不一样长的椅子能否放稳呢?答案是否定的。
1701008039
1701008040
1701008041
1701008042
1701008043 我和数学有约:趣味数学及算法解析 [:1701004230]
1701008044 我和数学有约:趣味数学及算法解析 6.11 拱形圆顶与椭圆顶哪个更划算
1701008045
1701008046 某个阿拉伯国家有一座著名的伊斯兰清真寺,它以中央大厅的金色巨大拱形圆顶名震遐迩。因年久失修,国王下令将清真寺顶部重新贴金箔装饰。
1701008047
1701008048 据档案记载,大厅的顶部形状为半球面,其半径为30米。考虑到可能的损耗和其他技术因素,实际用量将会比清真寺顶部面积多1.5%。据此,国王的财政大臣拨出了可制造5800平方米有规定厚度金箔的黄金。
1701008049
1701008050 建筑商人哈桑略通数学,他计算了一下,觉得黄金会有盈余。于是他以较低的承包价得到了这项装饰工程。但在施工前的测量中,工程师发现清真寺顶部实际上并非一个精确的半球面,而是一个半椭球面,其半立轴恰是30米,而半长轴和半短轴分别是30.6米和29.6米。这一来,哈桑犯了愁,他担心黄金是否还有盈余?甚至可能短缺,最后的结果究竟如何呢?
1701008051
1701008052 【问题】拱形圆顶与椭圆顶哪个更划算?
1701008053
1701008054 【分析】
[ 上一页 ]  [ :1.701008005e+09 ]  [ 下一页 ]