1701012758
做了这些改进之后,他的模型已经比较完美了,唯一的缺陷就是不能很好地表现电荷之间的相互作用。梳理过干燥头发的梳子带有电荷,可以吸住碎纸屑,原因就在于电荷的相互作用。同很多前辈一样,麦克斯韦也发现遇到问题时暂且放一放,反而更容易找到解决办法。
1701012759
1701012760
他想到,纸、瓷器等绝缘体内部的小球体被固定在微小电池上,不能像金属内部的小球体那样自由流动。他又想到,如果绝缘体的微小电池具有弹性(在固定位置上可以发生扭曲),这些电池就可以像弹簧一样,通过扭曲将能量暂时储存起来。与之相比,金属的微小电池是刚性的,几乎不会发生扭曲。这个想法不仅说得通,它还可以高度精确地模拟真实材料的特性,从而帮助我们了解电磁力的真实属性。根据这个模型,静电力与弹簧的势能非常相似,磁力则更像转动能,而且两者一定会产生相互作用,不可能独自出现。所有问题似乎都得到了妥善解决。但是,就在此时,麦克斯韦却发现了一个足以让整个模型变得一文不值的大问题。
1701012761
1701012762
法拉第场被认为无处不在,甚至存在于真空中。由于空间具有极强的绝缘性,因此,根据他的模型,空间应该包含弹性电池。弹性物体的一个特点是它可以传递波。事实上,弹性是波传播的必备条件。由此可见,电磁波似乎可以在真空中穿行。此外,弹性电池的扭曲会产生磁场,磁场又会拉扯邻近的小球体,进而形成电场。麦克斯韦认为,真空中应该有一个包含电波和磁波的自持波,其中电波和磁波彼此垂直,而且都与自持波的传播方向垂直。同时,电波会产生磁波,磁波又会产生电波,循环往复。
1701012763
1701012764
当时,人们已经确认光是一种独特的波,在介质中传播时会发生左右摆动。(通常,只有在介质边缘传播时,波才会左右摆动。)人们还通过实验发现,光与磁之间似乎存在某种联系。麦克斯韦在想,根据他的模型,光就是一种电磁波,这个近乎荒谬的结论到底是不是真的呢?毕竟,光可以毫不费力地穿透真空,从太阳传播到地球。随后,麦克斯韦对这种假设的波的传播速度进行了估算,结果发现它与光在真空中的传播速度非常接近。这个发现进一步展现了这个模型的惊人效力。
1701012765
1701012766
毫无疑问,麦克斯韦在数学工具的使用方面远远超过他的前辈,这也是他当时最令人瞩目的成就。但是,在对气体黏滞性进行了初步研究之后,他又一次放弃了自己建立的模型,然后重新开始研究电磁学。这一次,他没有使用流体、旋转式弹性电池等类比模型,而是采用了现代物理学家都非常熟悉的方法,即建立纯粹的没有掺杂其他任何内容的数学模型。
1701012767
1701012768
虽然他使用的仍然是建立模型的方法,但这个模型仅仅是一些表现一系列逻辑法则的数字。模型中没有图,没有类比,也无法让人们轻松掌握其中的原理。麦克斯韦使用的是18世纪意大利数学家约瑟夫–路易斯·拉格朗日发明的方法——拉格朗日函数。借助拉格朗日函数,人们可以通过微分方程组,以及系统各部分的动量、系统动能等要素,描述系统随时间的变化而发生变化的情况。
1701012769
1701012770
拉格朗日函数就像一个黑箱(在数学家的眼中极具简洁雅致的美感),只需输入已知因素,摇动把手,就能得到答案。使用者根本不需要深入了解系统的物理属性,因为建模时使用的全部是数字。
1701012771
1701012772
为了满足电磁学的特殊要求,麦克斯韦进行了一番复杂的改进,把拉格朗日的研究成果变成了一个比较简单的方程组,用来描述电与磁的特性。麦克斯韦的后辈们利用现代符号表示法,对麦克斯韦方程组进行了完善和精简,最后得到了4个令人惊叹的简短方程:
1701012773
1701012774
1701012775
1701012776
1701012777
对于现代物理学家而言,这些方程简单明了、司空见惯(然而大多数人却会惊叹于它们的复杂程度)。但是,在麦克斯韦提出这些方程组时,大多数科学家都觉得,单凭数学工具就构建出这个模型,实在是一件不可思议的事情。如此彻底地摆脱对现实世界的依赖,是很多人努力追求的目标,其中包括与麦克斯韦同时代的杰出人才、在更年轻时就已成为物理学教授的威廉·汤姆森(即开尔文勋爵)。由于没有人亲眼见过电磁波,因此人们对这个模型的反响并不强烈。但是,这套理论认为,只需让电荷沿着一片金属(现在的人称之为天线)运动,就可能产生电磁波。直到20年后,海因里希·赫兹用这种方法首次生成无线电波,麦克斯韦的这项突出成就才真正得到人们的普遍认可。
1701012778
1701012779
尽管麦克斯韦可以借助数学工具完成他的研究,但在当时,就连他本人也不相信由这些公式得出的所有推论。他喜欢借助数学工具建立模型,但是他认为那些数字不可能直接反映现实世界的本质。麦克斯韦曾经两次无视这些数字给他的提示:一次是他在提出一个假说时没有考虑这些数字;另一次是他直接忽略了这些方程给出的某个预测结果,原因是这个结果太奇怪了。
1701012780
1701012781
那个假说与以太有关。麦克斯韦的电磁波理论成立的前提条件是,真空有容留电磁场的能力,因为电磁波离不开电磁场。波的传播不需要任何介质。如果真的存在类似于普通物理材料的介质,这些波就会显得特别奇怪,因为介质会抑制波的左右振动,导致横波无法从介质中间穿过。通常,这样的波都在介质边缘传播(例如,在水面上或者在小提琴琴弦上)。能从介质中间穿过(例如声音在空气中传播)的波往往是压缩波,也就是波的振动方向与传播方向一致。
1701012782
1701012783
尽管麦克斯韦的模型明确地告诉他,光从恒星发出后,无须以太也能在真空中穿行,但他仍然坚信以太肯定存在。优秀的科学家几乎都兼具叛逆者和传统主义者的双重特点,他们肩负着破旧立新的使命,但是他们又不可能推翻一切、从头开始。他们必须依赖某些现存的观念,但是这些观念往往已经存在很长时间,以致失去了继续存在的意义。以太就是一个这样的概念。有趣的是,包括诺贝尔奖得主弗兰克·韦尔切克在内的一些现代物理学家认为,以太从一定意义上讲仍然是存在的,但是我们需要换一个思路,把数学意义上充斥整个空间的各种场(例如电磁场)视为以太。
1701012784
1701012785
麦克斯韦忽略的那个预测极具震撼性,令人震惊的程度远胜过以太是否存在这一问题。这个预测表明,一定存在可以回到过去的波。为了说明这个问题,我们有必要先花点儿时间,思考一个非常简单的数学问题。在下面这个方程中,x的值是多少呢?
1701012786
1701012787
x2= 4
1701012788
1701012789
即使“代数学”这个词令你惊恐万分、深恶痛绝,解这样的方程你肯定也会胸有成竹。我们的任务就是找到平方为4的x的值。不难发现,2是满足条件的答案。但是,如果在学校考试中解这个方程,回答2只能得到一半的分数,因为答案不止一个。x等于–2时方程同样成立。也就是说,这个方程有2和–2两个解。
1701012790
1701012791
某些方程(例如二次方程,上面这个方程就是一个简单的二次方程)经常会出现有两个解的情况。麦克斯韦方程组在预测电磁波这种自持波存在的可能性时,同样遭遇了这种情况。这些方程的解不是一个,而是两个,并分别被称作“延迟波”和“超前波”。根据这些方程,当我们熟悉的电磁波(包括无线电、X射线、伽马射线在内的所有光)从A传播至B时,这些波都是延迟波。但是,这些方程还描述了第二种波,即从B传播至A的超前波。在延迟波到达B的那一瞬间,超前波从B出发并逆时传播,在延迟波离开A的瞬间到达A。
1701012792
1701012793
这个预测显然面临两大难题。难题之一是,任何人都没有见过超前波。如果超前波真的存在,那么它们似乎可以完成时光倒流这种不可能实现的壮举。尽管数学上没有给出任何提示,告诉人们应该只保留其中一个解,忽略另外一个解,但是大家都这样做了,因为他们认为那个解非常奇怪,不应加以考虑。数学工具似乎给出了一个与现实世界格格不入的预测结果,但是,由于这些方程式完美地描述了电与磁的其他特点,所以人们无法弃之不用。
1701012794
1701012795
直到20世纪40年代,美国的两名物理学家约翰·惠勒和理查德·费曼才发现超前波不仅是这些方程的一个预测结果,它还可以在物理学领域发挥重要作用。尽管科学的发展在一定程度上需要科学家解放思想,但是既有的科学理论对大多数科学家的阻碍作用仍然十分明显。然而,惠勒和费曼都十分开明,不会被常识遮住双眼。
1701012796
1701012797
为了解释光与物质之间的相互作用,费曼等人创立了量子电动力学(QED)这个物理学分支,而走在时间前面的超前波将帮助他们解决一个问题。量子电动力学常常会引出数学意义上的无穷大概念(参见第12章),这个缺点不仅会影响量子电动力学的发展,还会给量子色动力学等现代理论惹来麻烦。当惠勒和费曼提出他们的大胆想法时,量子电动力学面临的电子反冲问题就属于这一类型的麻烦。如果原子中电子的能量降低并释放出一个光子,这个电子就会发生反冲,这与枪支发射子弹的情形十分相似(光子没有质量,但是它们有动量,而动量一定是守恒的)。
1701012798
1701012799
要让电子发生反冲,电子的电场必须作用于电子自身,因此它们实际上构成了一个反馈回路,而且会导致无穷大的结果。但是,当时的人已经知道电子会不停地释放光子,我们看到的光大多就是这样产生的。惠勒和费曼发现,如果每次产生的光子不止一个,而是两个,而且其中一个是逆时运动的超前光子,在解释反冲问题时就不会导致无穷大这种令人无法解释的结果了。
1701012800
1701012801
毫无疑问,惠勒和费曼的研究得出了一个有用的结果,但是人们一直认为这是一种效果不错的数学魔术,对于揭示现实世界的本质没有任何启示作用。当然,使用过这个研究方法的人大多(不包含惠勒和费曼)不认为物质世界中真的存在超前波和超前光子,但是这个例子再次说明数字可以产生与实际观察相匹配的结果(尽管本例中的这个结果有点儿出乎人们的意料)。常识告诉我们,波不可能进行逆时传播,但是数学工具却告诉我们相反的预测结果。事实证明,数学工具做出的稀奇古怪的预测,与更加直接的研究方法相比,其反映现实的效果更好。
1701012802
1701012803
对于现代数学界而言,无论我们怎么理解麦克斯韦方程组的解,这些方程都没有多大的难度,尽管当初提出这些方程的人是一个天才。然而,正如与麦克斯韦同时代的格奥尔格·康托尔发现的那样,即使是专业的数学人员,也会遇到解决不了的难题。
1701012804
1701012805
1701012806
1701012807
[
上一页 ]
[ :1.701012758e+09 ]
[
下一页 ]