1701042695
利用紧致性,得到有界闭区间[a,b]不同胚于开区间和[0,+∞);S1不同胚于E1.
1701042696
1701042697
利用连通性和反证法可得到[0,+∞)不同胚于E1.否则,设f:[0,+∞)→E1是同胚映射,则f|(0,+∞):(0,+∞)→E1{f(0)}也是同胚映射,但(0,+∞)连通,E1{f(0)}不连通,与连通是拓扑性质矛盾.
1701042698
1701042699
习 题
1701042700
1701042701
1.证明E1与En(n>1)不同胚.
1701042702
1701042703
2.证明I与S1不同胚.
1701042704
1701042705
3.若f:S1→E1连续,则f不是单的,也不是满的.
1701042706
1701042707
4.若f:S2→E1连续,则存在t∈E1,使得f-1(t)是不可数集,并且在f(S2)中,原像是可数集的点不多于2个.
1701042708
1701042709
1701042710
5.证明
1701042711
1701042712
6.证明两条相交直线的并集与一条直线不同胚.
1701042713
1701042714
① 确切地说,是用递归定义原理,而不是普通的归纳法.
1701042715
1701042716
② 参见周民强编著的《实变函数》(第二版,北京大学出版社,1996),第50页定理1.28.
1701042717
1701042718
③ 许多文献中要求仿紧空间必须是Hausdorff空间.
1701042719
1701042720
1701042721
1701042722
1701042724
基础拓扑学讲义 第三章 商空间与闭曲面
1701042725
1701042726
本章中,我们要讨论一类特殊的拓扑空间:闭曲面,它是拓扑学(特别是代数拓扑学和低维拓扑学)中最重要的研究对象之一,也常在许多别的数学分支中出现.我们将讨论闭曲面的拓扑分类问题.
1701042727
1701042728
商空间概念给出了一种从已有拓扑空间构造新空间的方法.这种方法在代数拓扑学中是很有用的.它也将是本章研究闭曲面时所用的主要方法.
1701042729
1701042731
§1 几个常见曲面
1701042732
1701042733
在曲面中,除了平面E2和球面S2外,最常见的是平环、Möbius带、环面、Klein瓶和射影平面.它们都可以用矩形面块经过粘合而得到.
1701042734
1701042735
1.1 平环和Möbius带
1701042736
1701042737
把矩形面块弯曲并将两侧边粘接,得到一截圆柱面(图3-1).
1701042738
1701042739
1701042740
1701042741
1701042742
图3-1
1701042743
1701042744
它同胚于平面上由两个同心圆所夹的环带,因此拓扑上称它为平环.确切地说,平环是一个拓扑等价类中诸空间的统称,不论这个空间确实是一环带,还是圆柱面或其他形状,也不管它的大小,只要属于该拓扑等价类,都称作平环.
[
上一页 ]
[ :1.701042695e+09 ]
[
下一页 ]