打字猴:1.70104402e+09
1701044020
1701044021
1701044022
1701044023
1701044024
1701044025 证明 取a和b的提升和,使得规定则f是I上的连续函数,f(0)=0.如果q(a)≠q(b),不妨设q(a)>q(b),则f(1)=q(a)-q(b)是自然数,从而有t∈I,使得即于是与条件矛盾. ▎
1701044026
1701044027
1701044028
1701044029 引理4 设a,b是S1上基点为z0的闭路,则
1701044030
1701044031
1701044032
1701044033
1701044034
1701044035
1701044036 证明 .设记ht是H的t-切片,∀t∈I.由于H是一致连续的,存在δ>0,使得|t1-t2|<δ时,由引理3,于是q(ht)不依赖于t,q(a)=q(h0)=q(h1)=q(b).
1701044037
1701044038
1701044039
1701044040
1701044041
1701044042
1701044043
1701044044
1701044045 .作是a,b的提升,使得则因此是E1上有相同起终点的道路,从而 ▎
1701044046
1701044047 定理4.3 π1(S1,z0)是自由循环群.
1701044048
1701044049 证明 设α∈π1(S1,z0),规定q(α)=q(a),a∈α,得到映射q:π1(S1,z0)→Z.
1701044050
1701044051
1701044052
1701044053
1701044054
1701044055
1701044056
1701044057 设α=〈a〉,β=〈b〉.作a,b的提升和,使得则是ab的提升.它的起、终点为和于是
1701044058
1701044059
1701044060
1701044061
1701044062
1701044063
1701044064
1701044065
1701044066
1701044067
1701044068 这说明q保持运算,是同态.引理4说明q是单同态.
1701044069
[ 上一页 ]  [ :1.70104402e+09 ]  [ 下一页 ]