打字猴:1.70104403e+09
1701044030
1701044031
1701044032
1701044033
1701044034
1701044035
1701044036 证明 .设记ht是H的t-切片,∀t∈I.由于H是一致连续的,存在δ>0,使得|t1-t2|<δ时,由引理3,于是q(ht)不依赖于t,q(a)=q(h0)=q(h1)=q(b).
1701044037
1701044038
1701044039
1701044040
1701044041
1701044042
1701044043
1701044044
1701044045 .作是a,b的提升,使得则因此是E1上有相同起终点的道路,从而 ▎
1701044046
1701044047 定理4.3 π1(S1,z0)是自由循环群.
1701044048
1701044049 证明 设α∈π1(S1,z0),规定q(α)=q(a),a∈α,得到映射q:π1(S1,z0)→Z.
1701044050
1701044051
1701044052
1701044053
1701044054
1701044055
1701044056
1701044057 设α=〈a〉,β=〈b〉.作a,b的提升和,使得则是ab的提升.它的起、终点为和于是
1701044058
1701044059
1701044060
1701044061
1701044062
1701044063
1701044064
1701044065
1701044066
1701044067
1701044068 这说明q保持运算,是同态.引理4说明q是单同态.
1701044069
1701044070
1701044071 记a0:I→S1为a0(t)=ei2πt,显然q(a0)=1,q(〈a0〉)=1.对任何正整数因此q又是满同态,从而是同构.于是,π1(S1,z0)是由〈a0〉生成的自由循环群. ▎
1701044072
1701044073 3.2 n≥2时,Sn单连通
1701044074
1701044075 Sn(n≥2)是道路连通的,下面证明π1(Sn)平凡.
1701044076
1701044077 命题4.11 设X1,X2都是X的开集,其中X2是单连通的,并且X1∪X2=X,X1∩X2非空,道路连通.则有iπ:π1(X1,x0)→π1(X,x0)是满同态,这里i:X1→X是包含映射,x0∈X1.
1701044078
1701044079 证明 只须证明X上以x0为基点的任一闭路a定端同伦于X1上的闭路.记X0=X1∩X2.
[ 上一页 ]  [ :1.70104403e+09 ]  [ 下一页 ]