打字猴:1.701048744e+09
1701048744
1701048745
1701048746
1701048747
1701048748
1701048749
1701048750
命题A.11 从而
1701048751
1701048752
1701048753
1701048754
1701048755
证明 因为是交换群,所以只须再证
1701048756
1701048757
1701048758
1701048759
1701048760
1701048761
∀g2∈Kerl,取g1∈f-1(g2).于是jj1(g1)=lf(g1)=l(g2)=0,从而j1(g1)∈j1(G0),即存在g0∈G0,使得j1(g0)=j1(g1).于是则 ▎
1701048762
1701048763
1701048764
1701048765
1701048766
推论 若f∶G1→G2是满同态,Kerf=G0.设是f诱导的同态(命题A.10),则其中是投射.
1701048767
1701048768
1701048769
1701048770
1701048771
1701048772
1701048773
1701048774
1701048775
1701048776
1701048777
1701048778
1701048779
1701048780
证明 根据命题A.11,有同构使得hl=j2,见左面图表.于是(hj)j1=j2f即就是f诱导的同态从而 ▎
1701048781
1701048782
1701048783
命题A.12
1701048784
1701048785
1701048786
1701048787
1701048788
1701048789
1701048790
1701048791
1701048792
证明记iλ∶Gλ→G1*G2是包含映射,λ=1,2;记φ1∶G1*G2→G1,是满足φ1i1=id,φ1i2平凡的同态.则有和使得(习题10).根据习题4(或习题11),只用再证明
1701048793
[
上一页
] [ :1.701048744e+09 ] [
下一页
]