1701049471
1701049472
1701049473
1.只证明
1701049474
1701049475
1701049476
1701049477
1701049478
根据定义,f(x)=inf{r∈QI|x∈Ur},而从而
1701049479
1701049480
1701049481
1701049482
若r∈QI满足则QI中任一大于r的数s,都有x∈Us,因此f(x)≤s.由QI在[0,1]上稠密,得出f(x)≤r.于是又有不等式
1701049483
1701049484
2.把En看作E1×E1×…×E1,记
1701049485
1701049486
f(x)=(f1(x),f2(x),…,fn(x)).
1701049487
1701049488
1701049489
1701049490
将每个fi扩张到X上得到规定为
1701049491
1701049492
1701049493
1701049494
1701049495
1701049496
则是f的扩张.
1701049497
1701049498
1701049499
1701049500
1701049501
1701049502
1701049503
1701049504
3.设r∶En→D是收缩映射,有ri=id∶D→D,从而f=rif∶A→D.映射if∶A→En可扩张为(上题结果),则是f的扩张.
1701049505
1701049506
1701049507
1701049508
4.设f∶A→Sn是一连续映射,记i∶Sn→En+1是包含映射,规定r∶En+1{O}→Sn为将if∶A→En+1扩张为g∶X→En+1.记U=g-1(En+1{O}),则U是A的开邻域,并且
1701049509
1701049510
1701049511
r(g|U)∶U→Sn
1701049512
1701049513
是f的扩张.
1701049514
1701049515
§3
1701049516
1701049517
1701049518
1701049519
2.(1)用反证法.如果可数开覆盖{Un}没有有限子覆盖,取得到序列{xn}.因为X列紧,所以{xn}有收敛的子序列{xni}.设xni→x0,x0∈Um.但当ni≥m时,所以Um只包含{xni}有限多项,这与xni→x0矛盾.
1701049520
[
上一页 ]
[ :1.701049471e+09 ]
[
下一页 ]