1701049863
1701049864
2..记H是到的一个同伦.任取x0∈X,规定Y中道路a∶I→Y为a(t)=H(x0,t),则a连结y1和y2.于是y1和y2在Y的同一道路分支中.
1701049865
1701049866
1701049867
1701049868
.记a是Y中连结y1和y2的道路,作H∶X×I→Y为H(x,t)=a(t),∀x∈X,则H连续,并且H(x,0)=y1,H(x,1)=y2,∀x∈X.即
1701049869
1701049870
1701049871
1701049872
3.设Sn上点作g是把X映为-a的常值映射,则∀x∈X,f(x)≠-g(x),由例2知,
1701049873
1701049874
1701049875
4..记H∶X×I→Y连结f及一个常值映射,则H把X×{1}映为Y的一点,因而H诱导连续映射F∶CX→Y,它限制在X上为f.
1701049876
1701049877
1701049878
1701049879
.记F∶CX→Y为f的扩张,p∶X×I→CX是粘合映射,则H=pF∶X×I→Y是连结f及一个常值映射的同伦.
1701049880
1701049881
1701049882
1701049883
1701049884
5.记F是a到b的定端同伦,规定G=fF,则G是fa到fb的定端同伦.
1701049885
1701049886
1701049887
1701049888
1701049889
1701049890
1701049891
1701049892
6..记H∶I×I→X是fp到gp的定端同伦,则它把{0,1}×I映为一点x0.规定G∶S1×I→X为G(ei2πt,s)=H(t,s),则G(1,s)=x0,∀s∈I,并且G(ei2πt,0)=H(t,0)=fp(t)=f(ei2πt),同理G(ei2πt,1)=g(ei2πt),即
1701049893
1701049894
1701049895
1701049896
1701049897
1701049898
.若作H∶I×I为H(t,s)=G(ei2πt,s),则H是fp到gp的定端同伦.
1701049899
1701049900
1701049901
1701049902
1701049903
8.用反证法.假设f没有不动点.规定S1上的对径映射为h∶S1→S1,即h(z)=-z,∀z∈S1.因为∀z∈S1,f(z)≠z=-h(z),由例2知而h与id同伦(请读者自证),从而与条件相违,故f无不动点.
1701049904
1701049905
§2
1701049906
1701049907
1.当X是平凡拓扑空间时,任何映射f∶Y→X都连续.于是X中任何两条有相同起终点的道路都定端同伦,于是π1(X,x0)只有一个元素.
1701049908
1701049909
2.离散拓扑空间的每个道路分支都是单点集,从而它的道路都是点道路,以x0为起终点的闭路就只有一条,从而π1(X,x0)只有一个元素.
1701049910
1701049911
3.理由同第2题.
1701049912
[
上一页 ]
[ :1.701049863e+09 ]
[
下一页 ]