打字猴:1.701049997e+09
1701049997
1701049998
1701049999
1701050000
1701050001 10.设a0是沿着A走一圈的x0处的闭路,则〈a0〉生成π1(A,x0),但在X中,〈a0〉是一生成元的两倍.
1701050002
1701050003
1701050004
1701050005 11.若有收缩映射r∶X→A,则rπ∶π1(X)→π1(A)是满同态,从而(由rπ是同构.又因为rπiπ是恒同,得出iπ是同构,与10题结论矛盾.
1701050006
1701050007 12.作r∶Dn{x0}→Sn-1{x0}如下:∀x∈Dn{x0},r(x)是射线x0x与Sn-1的交点.利用例5前的说明,知Sn-1{x0}是Dn{x0}的形变收缩核(Dn{x0}是凸集).
1701050008
1701050009
1701050010
1701050011
1701050012 14.用反证法.如果则可得出从而而n>1时,Sn-1单连通,S1不单连通,矛盾.
1701050013
1701050014
1701050015 15.用反证法.若则D2{O}同胚于Dn去掉一点,后者单连通,前者不单连通,矛盾.
1701050016
1701050017 16.不妨设l是z轴,则E3l以E2{O}为形变收缩核.
1701050018
1701050019 §5
1701050020
1701050021 3.设En{x1,x2,…,xm}=Xm.作xm的球形邻域B(xm,ε),使得它不含x1,…,xm-1,则Xm-1=Xm∪B(xm,ε),Xm∩B(xm,ε)=B(xm,ε){xm}是单连通的.用Van-Kampen定理,得到
1701050022
1701050023
1701050024 ∀m∈N.
1701050025
1701050026
1701050027 于是平凡.
1701050028
1701050029 4.(1)同构于Z*Z*Z;
1701050030
1701050031 (2)同构于Z*Z;
1701050032
1701050033 (3)同构Z*Z*Z*Z.
1701050034
1701050035 5.(1)同构于Z*Z;
1701050036
1701050037 (2)同构于Z*Z*Z*Z*Z;
1701050038
1701050039 (3)同构于Z*Z*Z*Z.
1701050040
1701050041 6.同构于Z3=Z/3Z.
1701050042
1701050043 8.(1)作收缩映射r∶E2→D2为
1701050044
1701050045
1701050046
[ 上一页 ]  [ :1.701049997e+09 ]  [ 下一页 ]