打字猴:1.701065186e+09
1701065186
1701065187 这一点很不符合直觉,事实上,很长一段时间里,科学家们都认为这不可能。然而,混沌现象在很多系统中都被观测到了,心脏紊乱、湍流、电路、水滴,还有许多其他看似无关的现象。现在混沌系统的存在已成为科学中公认的事实。
1701065188
1701065189 现在已无法说清楚是谁最先意识到可能存在这类系统。远在量子力学出现之前,就有很多人提出了对初始条件敏感依赖性的可能性。例如,物理学家麦克斯韦(James Clerk Maxwell)在1873年就猜想,有些量的“物理尺度太小,  [17]  以致无法被有局限性的人类注意,却有可能导致极为重要的结果”。
1701065190
1701065191 第一个明确的混沌系统的例子可能是19世纪末由法国数学家庞加莱(Henri Poincaré)(图2.4)给出。庞加莱是现代动力系统理论的奠基者,可能也是贡献最大的人,大力推动了牛顿力学的发展。庞加莱在试图解决一个比预测飓风简单得多的问题时发现了对初始条件的敏感依赖性。他试图解决的是所谓的三体问题(three-body problem):用牛顿定律预测通过引力相互作用的三个物体的长期运动。牛顿已经解决了二体问题。但没想到三体问题要复杂得多。在向瑞典国王表示敬意的一次数学竞赛中,庞加莱将其解决了。竞赛主办方提供2500瑞典克朗奖励解决“多体”问题:用牛顿定律预测任意多个相互吸引的物体的未来运动。提出这个问题是为了确定太阳系是否稳定,行星是会维持还是会偏离目前的轨道?庞加莱想先试着解决三体问题。
1701065192
1701065193
1701065194
1701065195
1701065196 ▲图2.4 庞加莱(1854—1912)(美国物理学会西格尔图像档案)
1701065197
1701065198 他并没有完全成功——这个问题实在太复杂了。但是他的尝试很精彩,所以最后还是赢得了奖金。牛顿发明了微积分,而庞加莱为了解决这个问题也创建了一个新的数学分支——代数拓扑(algebraic topology)。拓扑学是几何学的扩展,正是在研究三体问题的几何结果的过程中,庞加莱发现了对初始条件的敏感依赖性。下面是他对此的总结:
1701065199
1701065200 如果我们能知道自然界的定律1和宇宙在初始时刻的精确位置,我们就能精确预测宇宙在此后的情况。但是即便我们弄清了自然界的定律,我们也还是只能近似地知道初始状态。如果我们能同样近似地预测以后的状态,这也够了,我们也就能说现象是可以预测的,而且受到定律的约束。但并不总是这样,初始条件的细微差别有可能会导致最终现象的极大不同。前者的微小误差会导致后者的巨大误差。预测变得不可能……
1701065201
1701065202 换句话说,即便我们完全知道了运动定律,两组不同的初始条件(在这里是指物体的初始位置、质量和速度),即使差别很小,有时候也会导致系统随后的运动极为不同。庞加莱在三体问题中发现了一个这样的例子。
1701065203
1701065204 直到电子计算机出现之后,科学界才开始认识这类现象的意义。庞加莱远远超越了他所处的时代,他意识到对初始条件的敏感依赖性将会阻碍对天气的长期预报。他的远见于1963年被证实,气象学家洛伦兹(Edward Lorenz)发现,  [18]  即使是很简单的计算机气象模型,也会有对初始条件的敏感依赖性。现在虽然有了高度复杂的气象计算模型,天气预报也最多只能做到大致准确预测一个星期。目前还不清楚这个局限是否是天气的混沌本质导致的,也不知道通过收集更多数据和构造更好的模型,可以将这个局限推进多远。
1701065205
1701065206 复杂 [:1701064724]
1701065207 线性兔子和非线性兔子
1701065208
1701065209 现在我们再详细了解一下对初始条件的敏感依赖性。混沌系统中初始的不确定性到底是如何被急剧放大的呢?关键因素是非线性。对于线性系统,你可以先了解其组成,然后将它们合到一起。当我的两个儿子和我一起做厨艺时,他们喜欢轮流加原料。杰克放两杯面粉,跟着尼克又加一杯糖。结果呢?三杯面粉和糖的混合物,整体等于部分之和。
1701065210
1701065211 对于非线性系统,整体则不等于部分之和。杰克放了两杯苏打粉,尼克又加了一杯醋。整个事情就不可收拾了(你可以自己在家里试试)。有什么后果?你会得到大量醋、苏打粉和二氧化碳混合的泡泡。两者之间的区别在于:前面的糖和面粉不会产生反应生成新的东西,而后者的醋和苏打粉会剧烈反应,产生很多二氧化碳。
1701065212
1701065213 还原论者喜欢线性,而非线性则是还原论者的梦魇。理解线性和非线性的区别很有用,值得研究一下。为了更好地理解非线性以及混沌现象,我们要研究一点点简单的数学,借用一个经典的生物群体数量动力学模型来阐释线性和非线性。设想你养了一群兔子,兔子会配对生小兔子,每对兔子父母每年会生4只小兔子然后死去。图2.5显示了兔子的繁殖状况。
1701065214
1701065215
1701065216
1701065217
1701065218 ▲图2.5 倍增的兔群
1701065219
1701065220 很显然,如果不受限制,兔子的数量会每年翻番(这意味着兔子很快会接管这个星球,乃至太阳系和整个宇宙,不过我们暂时还不用担心)。
1701065221
1701065222 这是一个线性系统:  [19]  整体等于部分之和。我想让它们做什么呢?我们先将4只兔子分开放到两个岛上,每个岛上2只。然后让兔子继续繁殖。图2.6显示了繁殖两年的情形。
1701065223
1701065224 两边都是每年翻番。不管是哪一年,如果你把两个岛的兔子加起来,你得到的数量还是与没分开时一样多。
1701065225
1701065226 如果以当年的兔子数量为横坐标,以次年的兔子数量为纵坐标,将各年的数据标上去,你将会得到一条直线(图2.7)。这就是为什么称之为线性系统。
1701065227
1701065228
1701065229
1701065230
1701065231 ▲图2.6 倍增的兔群,分开在两个岛上
1701065232
1701065233 但是如果考虑到种群数量增长所受的限制,情况会怎样呢?这会使得增长规则变为非线性的。假定前面的规则仍然成立,每对兔子每年生4只小兔子然后死去。不过现在有些小兔子会因为太过拥挤没有繁殖就死去。研究种群数量的生物学家常用逻辑斯蒂模型  [20]  (Logistic model)描述这种情形下群体数量的增长。这个模型以一种简化方式描述群体数量的增长。你设定好出生率、死亡率(由于种群数量过多导致的死亡概率)以及最大种群承载能力(栖息地所能承载的种群数量上限),然后将这一代的种群数量代入逻辑斯蒂模型,就能算出下一代的种群数量。在这里我不给出逻辑斯蒂模型的具体形式  [21]  (注释中有),你可以在图2.8中看到它的变化情况。
1701065234
1701065235
[ 上一页 ]  [ :1.701065186e+09 ]  [ 下一页 ]