1701065478
1701065479
▲图3.1 上图:麦克斯韦(1831—1879)(美国物理学会西格尔图像档案)。下图:麦克斯韦妖会在快分子(白色)通往左边时和慢分子(黑色)通往右边时打开门
1701065480
1701065481
根据热力学第二定律,要减少熵就得做功。小妖又做了什么功呢?当然,他开门关门无数次。但是麦克斯韦假设了小妖使用的门既无质量也无摩擦,因此开门关门要不了多少功,可以忽略不计(对这种门提出了可行的设计)。那么小妖还做了其他的功吗?
1701065482
1701065483
麦克斯韦的回答是没有:“热系统(左边)变得更热, [40] 冷系统(右边)变得更冷,然而却没有做功,只有一个眼光锐利、手脚麻利的智能生物在工作。”
1701065484
1701065485
为什么没做功,熵也减少了呢?这岂不是违反了热力学第二定律?麦克斯韦的小妖难住了19世纪末和20世纪初许多杰出的头脑。麦克斯韦自己的回答是第二定律(熵随时间增加)根本就不是一条定律,而是在大量分子情形下成立的统计效应,在个体分子尺度上并不必然成立。
1701065486
1701065487
但是当时和后来许多物理学家都强烈反对。他们认为第二定律绝对没错,肯定是那个小妖玩了猫腻。既然熵减少了,肯定以某种难以确定的方式做了功,否则不可能。
1701065488
1701065489
很多人都想解决这个悖论,但是直到60年后这个问题才被圆满解决。1929年,突破出现了:杰出的匈牙利物理学家西拉德(Leo Szilard)提出,做功的是小妖的“智能”,更精确地说,是通过测量获取信息的行为。
1701065490
1701065491
西拉德(图3.2)是第一个将熵与信息联系起来的人,这个关联后来成了信息论的基础和复杂系统的关键思想。西拉德写了一篇题为“热力学系统在智能生物的干预下的熵的减少”的著名论文 [41] ,文中西拉德认为测量过程(小妖要通过测量获取“比特”信息,比如趋近的分子速度是慢是快)需要能量,因此必然会产生一定的熵,数量不少于分子变得有序而减少的熵。这样由箱子、分子和小妖组成的整个系统就仍然遵守热力学第二定律。
1701065492
1701065493
1701065494
1701065495
1701065496
▲图3.2 西拉德(1898—1964)(美国物理学会西格尔图像档案)
1701065497
1701065498
西拉德在此过程中也顺便定义了信息比特的概念——通过回答是/否(对小妖是“快/慢”)获得的信息。他可能是第一个这样做的人。
1701065499
1701065500
现在回过头来看,获取信息需要额外做功可能是很显然的事情,起码不那么让人吃惊。但是在麦克斯韦的时代,甚至到60年后西拉德写文章的时候,人们仍然强烈倾向于将物理和精神过程视为完全独立。也许正是这种牢固的直觉使得像麦克斯韦这样睿智的人也没有看出小妖的“智能”或“观测能力”对箱子—分子—小妖系统的热力学有影响。直到20世纪发现“观察者”在量子力学中扮演了关键角色之后,信息与物理的关系才开始被理解。
1701065501
1701065502
西拉德的理论后来由法国物理学家布里渊(Leon Brillouin)和伽柏(Denis Gabor)进行了扩展和一般化。此后许多科学家都认为,布里渊的理论彻底揭示了测量是如何产生熵,从而终结了小妖。
1701065503
1701065504
然而,事情还没有结束。在西拉德的论文发表50年后,西拉德和布里渊的论证都被发现有一些漏洞。20世纪80年代,数学家班尼特(Charles Bennett)证明, [42] 有非常巧妙的方式可以观察和记住信息——对小妖来说,也就是弄清分子是快是慢——而不用增加熵。班尼特的证明成了可逆计算(reversible computing)的基础,他证明在理论上可以进行任何计算而不用耗费能量。班尼特的发现似乎意味着小妖又回来了,因为测量可以不用耗费能量。不过,班尼特认为,物理学家兰道(Rolf Landauer)在20世纪60年代做出的一项发现可以挽救热力学第二定律:并不是测量行为,而是擦除记忆的行为,必然会增加熵。擦除记忆是不可逆的;如果被擦除了,那么一旦信息没有了,不进行额外的测量就无法恢复。班尼特证明,小妖如果要工作,到一定的时候就必须擦除记忆,如果这样,擦除的动作就会产生热,增加的熵刚好抵消小妖对分子进行分选而减少的熵。
1701065505
1701065506
兰道和班尼特弥补了西拉德论证的漏洞,但思路仍然是一致的:小妖测量和进行判断时(必然会进行擦除),不可避免地会增加熵,从而热力学第二定律仍然成立。(不过仍然有一些物理学家不认可兰道和班尼特的论证,小妖的问题依然存在争议。 [43] )
1701065507
1701065508
麦克斯韦发明小妖是将其作为一个简单的思维实验,以证明热力学第二定律不是一条定律,而只是统计效应。然而,同其他许多优秀的思维实验一样,小妖的影响很深远;对小妖难题的解决成为两个新领域的基础——信息论和信息物理学。
1701065509
1701065511
统计力学提要
1701065512
1701065513
在前面我将“熵”定义为对无法做功而只能转换成热的能量的测量。这个熵的概念最初是由克劳休斯(Rudolph Clausius)于1865年定义的。在克劳休斯的年代,热被认为是某种可以从一个系统流向另一个系统的流质,而温度则是系统受热流影响的一种属性。
1701065514
1701065515
此后数十年里,科学界开始出现一种新的关于热的观念:系统是由分子组成,而热则是分子运动——或者说动能——的产物。这种新观念主要归功于玻尔兹曼(Ludwig Boltzmann,图3.3),他创建了一门新学科,现在被称为统计力学。
1701065516
1701065517
1701065518
1701065519
1701065520
▲图3.3 玻尔兹曼(1844—1906)(美国物理学会西格尔图像档案,西格尔收藏)
1701065521
1701065522
统计力学认为宏观尺度上的属性(例如热)是由微观属性产生(例如无数分子的运动)。比如,想象房间里充满了运动的空气分子。经典力学分析是确定每个分子的位置和速度,以及作用在分子上的力,并根据这些确定每个分子未来的位置和速度。当然,如果有500亿亿个分子,要解出来可得花不少时间——实际上是完全不可能的,并且根据量子力学,在原则上也不可能。而统计力学的方法则不关心各个分子具体的位置、速度以及未来的变化,而是去预测大量分子整体上的平均位置和速度。
1701065523
1701065524
简而言之,经典力学试图用牛顿定律分析所有的单个微观对象(例如分子)。而热力学则只给出了宏观现象——热、能量和熵——的定律,没有说明微观分子是这些宏观现象的源头。统计力学则在两个极端之间搭建了一座桥梁,解释了宏观现象是如何从对大量微观对象的整体上的统计产生。
1701065525
1701065526
统计方法有一个问题——它只给出系统的可能行为。例如,如果房间里的空气分子随机运动,那么它们将极有可能扩散到整个房间,从而保证我们所有人都可以呼吸到空气。我们预计会这样,并且生命维系于此,而且也从没有失败。然而,根据统计力学,由于分子是随机运动,这样就存在一个极小的概率在某个时间分子都飞到一个角落里。然后那个角落里的人会被高气压压死,而我们其他人则会窒息而死。不过据我所知,这样的事情还从未发生过。这并不违反牛顿定律,只是极为不可能。玻尔兹曼认为,如果有足够多的微观对象进行平均,他的统计方法就几乎一直都能给出正确答案,而事实上也确实如此。但是在玻尔兹曼的时代,大部分物理学家都只接受 [44] 绝对正确的物理定律,“几乎一直”正确的物理定律是不会被接受的。此外,玻尔兹曼认为存在分子和原子这样的微观对象也让他的同行们感到不可理喻。玻尔兹曼于1906年自杀离世,有人认为这是大多数科学家对他的思想排斥所导致的。他死后不久,他的思想就被广泛认同了;现在他被认为是历史上最伟大的科学家之一。
1701065527
[
上一页 ]
[ :1.701065478e+09 ]
[
下一页 ]