打字猴:1.701065503e+09
1701065503
1701065504 然而,事情还没有结束。在西拉德的论文发表50年后,西拉德和布里渊的论证都被发现有一些漏洞。20世纪80年代,数学家班尼特(Charles Bennett)证明,  [42]  有非常巧妙的方式可以观察和记住信息——对小妖来说,也就是弄清分子是快是慢——而不用增加熵。班尼特的证明成了可逆计算(reversible computing)的基础,他证明在理论上可以进行任何计算而不用耗费能量。班尼特的发现似乎意味着小妖又回来了,因为测量可以不用耗费能量。不过,班尼特认为,物理学家兰道(Rolf Landauer)在20世纪60年代做出的一项发现可以挽救热力学第二定律:并不是测量行为,而是擦除记忆的行为,必然会增加熵。擦除记忆是不可逆的;如果被擦除了,那么一旦信息没有了,不进行额外的测量就无法恢复。班尼特证明,小妖如果要工作,到一定的时候就必须擦除记忆,如果这样,擦除的动作就会产生热,增加的熵刚好抵消小妖对分子进行分选而减少的熵。
1701065505
1701065506 兰道和班尼特弥补了西拉德论证的漏洞,但思路仍然是一致的:小妖测量和进行判断时(必然会进行擦除),不可避免地会增加熵,从而热力学第二定律仍然成立。(不过仍然有一些物理学家不认可兰道和班尼特的论证,小妖的问题依然存在争议。  [43]  )
1701065507
1701065508 麦克斯韦发明小妖是将其作为一个简单的思维实验,以证明热力学第二定律不是一条定律,而只是统计效应。然而,同其他许多优秀的思维实验一样,小妖的影响很深远;对小妖难题的解决成为两个新领域的基础——信息论和信息物理学。
1701065509
1701065510 复杂 [:1701064732]
1701065511 统计力学提要
1701065512
1701065513 在前面我将“熵”定义为对无法做功而只能转换成热的能量的测量。这个熵的概念最初是由克劳休斯(Rudolph Clausius)于1865年定义的。在克劳休斯的年代,热被认为是某种可以从一个系统流向另一个系统的流质,而温度则是系统受热流影响的一种属性。
1701065514
1701065515 此后数十年里,科学界开始出现一种新的关于热的观念:系统是由分子组成,而热则是分子运动——或者说动能——的产物。这种新观念主要归功于玻尔兹曼(Ludwig Boltzmann,图3.3),他创建了一门新学科,现在被称为统计力学。
1701065516
1701065517
1701065518
1701065519
1701065520 ▲图3.3 玻尔兹曼(1844—1906)(美国物理学会西格尔图像档案,西格尔收藏)
1701065521
1701065522 统计力学认为宏观尺度上的属性(例如热)是由微观属性产生(例如无数分子的运动)。比如,想象房间里充满了运动的空气分子。经典力学分析是确定每个分子的位置和速度,以及作用在分子上的力,并根据这些确定每个分子未来的位置和速度。当然,如果有500亿亿个分子,要解出来可得花不少时间——实际上是完全不可能的,并且根据量子力学,在原则上也不可能。而统计力学的方法则不关心各个分子具体的位置、速度以及未来的变化,而是去预测大量分子整体上的平均位置和速度。
1701065523
1701065524 简而言之,经典力学试图用牛顿定律分析所有的单个微观对象(例如分子)。而热力学则只给出了宏观现象——热、能量和熵——的定律,没有说明微观分子是这些宏观现象的源头。统计力学则在两个极端之间搭建了一座桥梁,解释了宏观现象是如何从对大量微观对象的整体上的统计产生。
1701065525
1701065526 统计方法有一个问题——它只给出系统的可能行为。例如,如果房间里的空气分子随机运动,那么它们将极有可能扩散到整个房间,从而保证我们所有人都可以呼吸到空气。我们预计会这样,并且生命维系于此,而且也从没有失败。然而,根据统计力学,由于分子是随机运动,这样就存在一个极小的概率在某个时间分子都飞到一个角落里。然后那个角落里的人会被高气压压死,而我们其他人则会窒息而死。不过据我所知,这样的事情还从未发生过。这并不违反牛顿定律,只是极为不可能。玻尔兹曼认为,如果有足够多的微观对象进行平均,他的统计方法就几乎一直都能给出正确答案,而事实上也确实如此。但是在玻尔兹曼的时代,大部分物理学家都只接受  [44]  绝对正确的物理定律,“几乎一直”正确的物理定律是不会被接受的。此外,玻尔兹曼认为存在分子和原子这样的微观对象也让他的同行们感到不可理喻。玻尔兹曼于1906年自杀离世,有人认为这是大多数科学家对他的思想排斥所导致的。他死后不久,他的思想就被广泛认同了;现在他被认为是历史上最伟大的科学家之一。
1701065527
1701065528 复杂 [:1701064733]
1701065529 微观态与宏观态
1701065530
1701065531 在充满空气的房间中,在任意时刻每个分子都有特定的位置和速度,只是无法具体测量。在统计力学的术语中,特定分子集合在某一时刻的位置和速度称为那个时刻的微观状态。对于充满了随机飞舞的分子的房间,最可能的微观状态类型就是空气分子均匀地充满整个房间。而最不可能的微观状态就是空气分子紧紧地聚到一个地方。这看上去显而易见,但是玻尔兹曼注意到这是因为分子均匀分布的微观状态比聚到一起的微观状态要多得多。
1701065532
1701065533 这种情形有点类似吃角子老虎(图3.4)。假设三幅图片可能为“苹果”“橙子”“樱桃”“梨”或“柠檬”。你投个硬币进去,让老虎机转起来。图片存在不同(你输钱)的可能性比图片全部相同(你大赢一笔)的可能性要大得多。现在假设老虎机有500亿亿种图片,要让所有图片都相同就类似于让所有分子都聚到一点的情形,可能性基本为零。
1701065534
1701065535 系统的宏观状态就是微观状态的类型,例如,“所有图片都相同——你赢”相对“图片不完全相同——你输”,或者“分子聚集到一起——我们窒息”相对“分子均匀分布——我们能呼吸”,一个宏观状态能对应许多不同的微观状态。玩老虎机时,有各种由不同图片组成的微观状态,这些微观状态都对应于同一个宏观状态“你输”,而只有不多的微观状态对应宏观状态“你赢”。这就是为什么赌场能挣大钱的原因。温度也是宏观状态——它与许多不同的微观状态相对应,各微观状态的分子平均速度恰好对应相同的温度。
1701065536
1701065537
1701065538
1701065539
1701065540 ▲图3.4 有三个旋转图片的老虎机,说明微观状态和宏观状态的概念(David Moser绘制)
1701065541
1701065542 根据这些思想,玻尔兹曼将热力学第二定律解释为封闭系统更有可能处于可能性大的宏观状态。这听起来像是废话,不过在当时这种想法却相当离经叛道,因为涉及了概率的概念。玻尔兹曼将宏观状态的熵定义为  [45]  其对应的微观状态的数量。例如,图3.4的老虎机中,图片可以是“苹果”“橙子”“樱桃”“梨”或“柠檬”,这样就总共有125种可能的组合(微观状态),其中有5种对应于“所有图片都相同——你赢”的宏观状态,120种对应于“图片不完全相同——你输”的宏观状态。后一种宏观状态的玻尔兹曼熵明显高于前一种。
1701065543
1701065544 玻尔兹曼熵遵守热力学第二定律。除非做功,否则玻尔兹曼熵会一直增加,直到到达最大可能熵的宏观状态。玻尔兹曼证明,在许多情形下,他对熵的简单定义与克劳休斯的定义等价。
1701065545
1701065546 玻尔兹曼熵的公式  [46]  被刻在维也纳玻尔兹曼的墓碑上(图3.5),现在这个方程已经成为物理学的基石。
1701065547
1701065548
1701065549
1701065550
1701065551 ▲图3.5 玻尔兹曼的墓碑,维也纳(Martin Roell提供图片)
1701065552
[ 上一页 ]  [ :1.701065503e+09 ]  [ 下一页 ]