打字猴:1.70106592e+09
1701065920
1701065921 总结一下达尔文理论的主要思想:
1701065922
1701065923 ◆存在进化,所有物种都来自共同的祖先。生命的历史就是物种呈树状分化。
1701065924
1701065925 ◆一旦生物的数量超出了资源的承载能力,生物个体就会为资源竞争,从而导致自然选择。
1701065926
1701065927 ◆生物性状会遗传变异。变异在某种意义上是随机的——变异并不必然会增加适应性(虽然前面提到达尔文自己接受拉马克的观点,认为是这样的)。能够适应当前环境的变异更有可能被选择,也就是说具有这种变异的生物更有可能存活,并将这种新的性状遗传给后代,从而让后代中具有这种性状的个体增加。
1701065928
1701065929 ◆进化是通过细微的有利变异不断累积逐渐形成的。
1701065930
1701065931 根据这个观点,自然选择导致的进化产物就像是被“设计”出来的,却不存在设计者。是机遇、自然选择和漫长的时间造就了这一切。熵的减少(生命系统结构越来越复杂,就像设计过的)是自然选择的结果。这个过程所需的能量来自生物从环境中获取的能量(阳光、食物等)。
1701065932
1701065933 复杂 [:1701064748]
1701065934 孟德尔和遗传律
1701065935
1701065936 达尔文的理论没有解释性状如何从父代传给子代,也没有解释自然选择的基础——性状的变异——是如何产生的。直到20世纪40年代才发现DNA是遗传信息的载体。19世纪提出了许多遗传理论,但都没有产生很大影响,直到1900年,孟德尔(Gregor Mendel,图5.3)的工作被“重新发现”。
1701065937
1701065938 孟德尔是奥地利人,他是一位修道士,又是一位对自然有着强烈兴趣的物理教师。孟德尔在了解拉马克的获得性状遗传理论后,用豌豆做了一系列实验,以验证拉马克的理论,时间长达8年。他的结果不仅否定了拉马克的推测,同时也揭示了遗传的一些惊人的本质。
1701065939
1701065940 孟德尔研究了豌豆的几种性状:种子的光滑度和颜色;豆荚的形状;豆荚和花的颜色;花在植株上的位置以及植株的高度。每种性状都有两种不同的表现(例如,豆荚可以是绿色或黄色;植株可以是高或矮)。
1701065941
1701065942
1701065943
1701065944
1701065945 ▲图5.3 孟德尔(1822—1884)(引自国家医药图书馆,National Library of Medicine)(http://wwwils.nlm.nih.gov/visibleproofs/galleries/technologies/dna.html)
1701065946
1701065947 直到现在,孟德尔的发现在遗传学中都被认为大致是正确的。首先,他发现植株的后代并不能遗传父代在生命期中获得的性状。因此拉马克式的遗传是不成立的。
1701065948
1701065949 另外他发现遗传是通过父母提供的离散“因子”产生的,每种性状对应父母提供的一种因子(也就是说,父母提供的一个因子决定了是高株还是矮株)。这里的因子大致对应于我们所说的基因。因此遗传的媒介是离散的,而不是像达尔文等人提出的是连续的(豌豆既可自花授粉也可异花授粉)。
1701065950
1701065951 孟德尔还发现,对于他研究的每一种性状,每一植株都有一对基因与之相对应(简单起见,我使用更为现代的术语,在孟德尔的时代并没有“基因”这个术语)。其中每个基因都对那种性状——例如高和矮——进行编码。这被称为等位基因(allele)。这样对于植株高度,其等位基因的编码就有三种可能:两者一样(高/高或矮/矮)或者不同(高/矮,与矮/高等同)。
1701065952
1701065953 不仅如此,孟德尔还发现,对于每一种性状,等位基因中有一个是显性的(例如高矮性状中高为显性性状),另一个则是隐性的(例如矮为隐性形状)。高/高个体总是表现为高株。高/矮个体也会表现为高株,因为高是显性的;只要有一个显性基因就够了。而只有矮/矮个体——两者都是隐性基因——才会表现为矮株。
1701065954
1701065955 举个例子,假设你用两株高/矮个体进行异花授粉。父母都很高,却还是有四分之一的可能他们的后代会从两者都遗传到矮基因,从而产生出矮/矮个体。
1701065956
1701065957 利用概率和推理,孟德尔能成功预测一代植株中表现出显性性状和隐性性状的植株各有多少。孟德尔的实验推翻了当时盛行的“混合遗传”的观念——认为子代的性状会是父母性状的平均。
1701065958
1701065959 孟德尔的研究是对遗传现象的第一个解释和量化预测,虽然孟德尔不知道他说的“因子”是什么构成的,也不知道它们如何通过交配重组。遗憾的是,1865年他的论文《植物杂交实验》发表在一个相当不著名的期刊上,因而其重要性直到1900年才被承认,后来有几位科学家也通过实验得到了类似的结果。
1701065960
1701065961 复杂 [:1701064749]
1701065962 现代综合
1701065963
1701065964 你可能会认为孟德尔的结果对达尔文主义会是极大的促进,因为它为遗传机制提供了实验验证。但其实在数十年里,孟德尔的思想都被认为是否定了达尔文的思想。达尔文的理论认为进化包括变异都是连续的(也就是说,生物个体之间的差异可以极为细微),而孟德尔的理论则提出变异是离散的(豌豆植株要么高要么矮,不能介于两者之间)。孟德尔理论的许多早期拥护者信奉突变学说(mutation theory)——认为生物变异是由于后代的突变,有可能非常大,并且自身产生进化,而自然选择只是用来保留(或消除)种群中这种突变的次要机制。达尔文及其早期追随者则坚决反对这种思想;达尔文理论的基石就是个体变异必须非常小,正是对这种微小变化的自然选择导致了进化,而且进化是渐进的。对于突变学说,达尔文有一句著名的驳斥,“Natura non facit saltum(自然不会跳跃)”。
1701065965
1701065966 达尔文主义者和孟德尔主义者相互论战了多年,直到20世纪20年代,人们发现,与孟德尔的豌豆的性状不同,生物的大部分性状都是由许多基因一起决定的,每个基因都有数个不同的等位基因,这种争论才烟消云散。多个不同等位基因会有数量极大的组合可能,从而使得生物的变异像是连续的。生物在基因层面的离散变异会导致表型——基因决定的生理特征(例如高矮、肤色等)——看似连续的变异。人们最终认识到,达尔文与孟德尔的理论并不矛盾,而是互补的。
1701065967
1701065968 早期达尔文主义者与孟德尔主义者之所以会水火不容,还有另一个原因,就是虽然双方都有实验证据支撑他们的立场,但当时却还没有成熟的概念体系(例如多个基因控制性状)和数学能将双方的理论融合到一起。要分析在杂交种群中多个基因在自然选择下相互作用的孟德尔式遗传的结果,必须发展出一套全新的数学工具。这套工具到20世纪20—30年代才由数学生物学家费希尔(Ronald Fisher)发展出来。
1701065969
[ 上一页 ]  [ :1.70106592e+09 ]  [ 下一页 ]