打字猴:1.701066038e+09
1701066038 到20世纪20年代末,化学家发现了核糖核酸(RNA)和脱氧核糖核酸(DNA),但是发现它们与基因的关联还要再过几年。接着又发现染色体中含有DNA,有些人开始怀疑DNA就是遗传物质。另一些人则认为细胞核中的蛋白质才是遗传物质。当然后来发现DNA才是正确答案,20世纪40年代中期最终通过实验证明了这一点。
1701066039
1701066040 但是还是有一些大的挑战。DNA到底是怎样决定生物性状的?比如说高株和矮株?细胞有丝分裂时DNA又是如何复制?作为自然选择基础的变异为何会发生在DNA层面上?
1701066041
1701066042 此后10年,这些问题都大致得到了解决。最大的突破发生在1953年,沃森(James Watson)和克里克(Francis Crick)发现,DNA的结构是双螺旋。20世纪60年代初,几位科学家一起成功破解了遗传密码——DNA如何编码构成蛋白质的氨基酸。孟德尔无法知道基因的分子结构,但认识到了基因的存在,而现在基因终于可以用编码特定蛋白质的DNA片段进行定义了。很快又发现了编码如何被细胞转化为蛋白质,DNA如何复制自身,以及复制错误、突变和性重组如何引起变异。遗传学研究从此被引爆,此后迅速发展,直至现在。
1701066043
1701066044 生物的所有性状——表型——几乎都是源自细胞中蛋白质的特性及其相互作用。蛋白质是由氨基酸组成的长链分子。
1701066045
1701066046 你身体中每个细胞都有几乎一样的完整DNA序列,DNA序列由核苷酸连在一起组成。核苷酸含有称为碱基的化合物,碱基有四种形式,(缩写为)A、C、G、T。人类的DNA序列实际上是由A、C、G、T分子对组成的双线。化学势使得A总是与T配对,C则与G配对。
1701066047
1701066048 序列经常用两行符号(碱基对)表示,例如:
1701066049
1701066050 T C C G A T T……
1701066051
1701066052 A G G C T A A……
1701066053
1701066054 在DNA分子中,双线相互缠绕,形成一条双螺旋(图6.1)。
1701066055
1701066056
1701066057
1701066058
1701066059 ▲图6.1 DNA的双螺旋结构[美国国家人类基因组研究所,基因研究组语音词汇(http://www.genome.gov/glossary.cfm.)]
1701066060
1701066061 基因就是由DNA的序列片段组成。大致上,一个基因对应于一个特定的蛋白质。基因编码了构成蛋白质的氨基酸。氨基酸的编码方式就是遗传密码。这个编码对地球上的所有生物几乎都是一样的。三个碱基对应一种氨基酸。例如AAG就对应苯基丙氨酸,CAC则对应缬氨酸。这种三联体被称为密码子。
1701066062
1701066063 基因又是如何构造蛋白质的呢?每个细胞都有一套复杂的分子机制来进行这个工作。第一步是转录(图6.2),这一步是在细胞核中进行。一种被称为核糖核酸聚合酶的活性蛋白会从双螺旋的一边松开一小段DNA。然后这种酶会用DNA的一边产生出信使RNA分子(m RNA),m RNA逐字复制DNA片段。实际上是反拷贝:如果基因上为C, m RNA上则对应为G,如果基因上为A, m RNA上就对应为U(m RNA版本的T)。通过反复制又可以重构出原来的序列。
1701066064
1701066065
1701066066
1701066067
1701066068 ▲图6.2 DNA转录为信使RNA。注意DNA中是符号T, RNA中则是符号U
1701066069
1701066070 这个转录过程一直持续到基因完全转录成m RNA。
1701066071
1701066072 第二步是翻译(图6.3),这是在细胞质中进行。新产生的m RNA序列从细胞核进入细胞质,在这里细胞质结构核糖体将m RNA上的密码子逐个读出。在核糖体中,各个密码子会与转运RNA分子(t RNA)上的反密码子结合。反密码子是由互补碱基组成。例如,在图6.3中,被转录的m RNA密码子是U A G,反密码子则是互补碱基A U C。如图6.3所示,t RNA分子上的反密码子会与m RNA的密码子相连。而t RNA分子的反密码子则会组合成相应的氨基酸(密码子A U C实际就是异亮氨酸的编码)。侯世达将t RNA比喻为“细胞的闪存卡”。  [85]  
1701066073
1701066074
1701066075
1701066076
1701066077 ▲图6.3 信使RNA转译成氨基酸
1701066078
1701066079 核糖体将氨基酸从t RNA分子上分离下来并将它们合成为蛋白质。一旦遇到终止密码子,核糖体就会收到停止信号,然后将蛋白质释放到细胞质,让它们去执行自己的功能。
1701066080
1701066081 基因的转录和翻译就称为基因表达。
1701066082
1701066083 所有这一切都在亿万个细胞中不断进行。神奇的是这一切所需的能量非常少——如果你坐着看电视,所有亚细胞层面的活动每小时消耗的能量不会超过418焦。这是因为这些过程依靠的是分子的随机运动和大量的碰撞,只需从“环境热源”(比如你温暖的房间)中获取能量就够了。
1701066084
1701066085 碱基的配对特性,A配T, C配G,也是DNA复制的关键。在有丝分裂开始时,酶会将DNA的双螺旋解开。然后其他酶会读取两条DNA上的核苷酸,并将新的核苷酸附到上面(在细胞中新的核苷酸会不断被制造出来),A连到T, C连到G。这样,DNA就被复制成了两个新的DNA双螺旋,每个新细胞都得到一份完整的DNA拷贝。细胞中有许多机制保证复制正常进行,但是偶尔也会发生错误(碱基配对错误,大约1000亿个核苷酸产生一次),从而导致变异。
1701066086
1701066087 值得注意的是,这其中含有绝妙的自指特性:所有这些决定DNA的转录、翻译和复制的复杂细胞机制——m RNA、t RNA、核糖体、聚合酶,等等——本身都编码在DNA中。就像侯世达说的:“DNA中包含其本身的解码者的编码!”它也包含合成核苷酸的所有蛋白质的编码,而核苷酸是构造DNA的材料。如果图灵还活着,看到这种自指特性肯定会非常高兴。
[ 上一页 ]  [ :1.701066038e+09 ]  [ 下一页 ]