打字猴:1.70106705e+09
1701067050
1701067051 对于元胞自动机等非冯·诺依曼结构的计算机来说,答案就不是那么显而易见了。例如我们在上一章用遗传算法演化出来执行多数分类任务的元胞自动机就是这样。与传统计算机做个类比,我们可以说元胞自动机的信息就是元胞格子在每一步的状态组合。输入就是初始状态组合,输出则是最终的状态组合,在每个中间步的信息则根据元胞自动机规则在元胞邻域内进行传递和处理。意义来自人们对所执行的任务的认识以及对从输入到输出的映射的解读(例如,“元胞最终都变成了白色;这意味着初始状态组合中白色元胞占多数”)。
1701067052
1701067053 在这个层面上描述信息处理就类似于在“机器码层面”进行描述,并不能帮助人们理解计算是如何完成的。同冯·诺依曼结构计算的情形一样,在这里我们也需要一种高级语言来理解中间步骤的计算,对元胞自动机底层的具体细节进行抽象。
1701067054
1701067055 上一章我提出,粒子以及粒子的相互作用可以用来描述元胞自动机的信息处理,类似于高级语言。信息通过粒子的运动来传递,粒子的碰撞则是对信息进行处理。这样,信息处理的中间步骤就通过人们对粒子行为的解释获得了意义。
1701067056
1701067057 冯·诺依曼结构的计算之所以容易描述,一个原因就是,编程语言层面和机器码层面可以毫无歧义地相互转化,因为计算机的设计让这种转化可以很容易做到。计算机科学提供了自动编译和反编译的工具,让我们可以理解具体的程序是如何处理信息的。
1701067058
1701067059 而元胞自动机则不存在这样的编译和反编译工具,至少目前还没有,也没有实用和通用的设计“程序”的高级语言。用粒子来帮助理解元胞自动机高级信息处理结构的思想也是最近才出现,还远没有形成此类系统的计算理论体系。
1701067060
1701067061 理解元胞自动机信息处理的困难在实际生命系统中也同样存在。“自然系统的‘计算’指的是什么?”对于这个问题目前仍然知之甚少,在科学家、工程师和哲学家之间存在着广泛的争议。然而它对于复杂系统科学又是极为重要的问题,因为对生命系统中信息处理的高层次描述不仅能让我们从更高的视角理解具体系统的运作,也能让我们超越系统繁杂的细节,抽象出一般性原理。实质上,这种描述就是为生物学提供一种“高级语言”。
1701067062
1701067063 这一章余下部分将力图用具体的例子来阐明这种思想。
1701067064
1701067065 复杂 [:1701064788]
1701067066 免疫系统
1701067067
1701067068 在第1章曾讲到过免疫系统。现在我们来更深入地了解一下,为了保护身体免受病毒、细菌、寄生虫等病原体的侵害,免疫系统  [169]  是如何处理信息的。
1701067069
1701067070 我们知道,免疫系统是由数以亿计的各种细胞和分子组成,它们在身体里循环,通过各种信号相互影响。
1701067071
1701067072 在免疫系统各种类型的细胞中,我关注的是淋巴细胞(白细胞的一种,图12.1)。淋巴细胞是在骨髓中产生的。有两种淋巴细胞很重要,释放抗体攻击病毒和细菌的B细胞,以及杀死入侵者同时还调节其他细胞反应的T细胞。
1701067073
1701067074
1701067075
1701067076
1701067077 ▲图12.1 人类淋巴细胞,表面覆盖着受体,可以与遇到的特定形状的分子相结合[图片来自美国国家癌症研究所(National Cancer Institute, http://visualsonline.cancer.gov/details.cfm?imageid=1944)]
1701067078
1701067079 身体中所有细胞表面都有称为受体的分子。顾名思义,这些分子是细胞接收信息的途径。信息表现为能与受体分子结合的外界分子。受体能否与某个分子结合取决于它们的分子结构是否能充分匹配。
1701067080
1701067081 一个淋巴细胞表面覆盖的受体是一样的,可以与特定的某一类分子形状匹配。如果恰好遇到了形状相匹配的病原体分子(称为“抗原”),淋巴细胞的受体就会与其相结合,淋巴细胞就“识别”出了抗原,这是消灭病原体的第一步。结合可强可弱,依赖于分子与受体的匹配程度。图12.2描绘了这个过程。
1701067082
1701067083
1701067084
1701067085
1701067086 ▲图12.2 淋巴细胞(图中为B细胞)受体与抗原结合的示意图
1701067087
1701067088 免疫系统面临的主要问题是,它不知道什么病原体将会入侵身体,因此它也就不可能“预先设计”出一组淋巴细胞,让它们的受体与入侵病原体的分子形状刚好能紧密结合。而且可能的病原体种类是个天文数字,因此免疫系统永远也不可能在同一时间产生出那么多淋巴细胞以应对每一种可能。虽然身体每天会产生数以百万计不同的淋巴细胞,但是身体可能遇到的病原体却还要多得多。
1701067089
1701067090 我们来看看免疫系统是如何解决这个问题的。为了能“覆盖到”各种各样可能的病原体外形,身体内会同时存在许多种类型的淋巴细胞。免疫系统利用随机性,让淋巴细胞能识别的形状范围互不相同。
1701067091
1701067092 当淋巴细胞产生时,通过淋巴细胞DNA复杂的随机重组过程,新的受体会被创造出来。由于淋巴细胞群体不断更新(每天会产生上千万新的淋巴细胞),身体也就不断产生具有新的受体形状的淋巴细胞。对于任何进入体内的病原体,身体很快就产生出能与病原体的标记分子(也就是抗原)相结合的淋巴细胞,虽然结合可能不是很紧密。
1701067093
1701067094 一旦发生了结合事件,免疫系统就得搞清楚这是不是真正的威胁。病原体当然是有害的,一旦它们进入身体,就会开始大量复制。不过发动免疫系统攻击会导致发炎等对身体有害的症状,攻击太强烈甚至有可能致命。免疫系统作为一个整体必须确定威胁是否足够严重,值得承担让免疫反应伤害身体的风险。免疫系统只有在强结合事件足够多之后才会进入高速运转模式。
1701067095
1701067096 B细胞和T细胞这两种类型的淋巴细胞协同工作,判断攻击是否有必要。一旦B细胞表面强结合受体的数量超过了某个阈值,与此同时B细胞从有类似受体的T细胞那里收到了“发动”信号,B细胞就会被激活,表明它现在感觉到了身体受到威胁(图12.3)。一旦激活,B细胞就会向血液中释放抗体分子。这些抗体与抗原结合,使它们失效,并对它们进行标记,好让其他免疫细胞摧毁它们。
1701067097
1701067098 激活的B细胞被输送到淋巴结,在那里迅速分裂,产生出大量后代,复制时由于变异,许多后代的受体形状都改变了。然后这些后代会与淋巴结俘获的抗原进行测试。不能结合的细胞很快就会死去。
1701067099
[ 上一页 ]  [ :1.70106705e+09 ]  [ 下一页 ]