1701067089
1701067090
我们来看看免疫系统是如何解决这个问题的。为了能“覆盖到”各种各样可能的病原体外形,身体内会同时存在许多种类型的淋巴细胞。免疫系统利用随机性,让淋巴细胞能识别的形状范围互不相同。
1701067091
1701067092
当淋巴细胞产生时,通过淋巴细胞DNA复杂的随机重组过程,新的受体会被创造出来。由于淋巴细胞群体不断更新(每天会产生上千万新的淋巴细胞),身体也就不断产生具有新的受体形状的淋巴细胞。对于任何进入体内的病原体,身体很快就产生出能与病原体的标记分子(也就是抗原)相结合的淋巴细胞,虽然结合可能不是很紧密。
1701067093
1701067094
一旦发生了结合事件,免疫系统就得搞清楚这是不是真正的威胁。病原体当然是有害的,一旦它们进入身体,就会开始大量复制。不过发动免疫系统攻击会导致发炎等对身体有害的症状,攻击太强烈甚至有可能致命。免疫系统作为一个整体必须确定威胁是否足够严重,值得承担让免疫反应伤害身体的风险。免疫系统只有在强结合事件足够多之后才会进入高速运转模式。
1701067095
1701067096
B细胞和T细胞这两种类型的淋巴细胞协同工作,判断攻击是否有必要。一旦B细胞表面强结合受体的数量超过了某个阈值,与此同时B细胞从有类似受体的T细胞那里收到了“发动”信号,B细胞就会被激活,表明它现在感觉到了身体受到威胁(图12.3)。一旦激活,B细胞就会向血液中释放抗体分子。这些抗体与抗原结合,使它们失效,并对它们进行标记,好让其他免疫细胞摧毁它们。
1701067097
1701067098
激活的B细胞被输送到淋巴结,在那里迅速分裂,产生出大量后代,复制时由于变异,许多后代的受体形状都改变了。然后这些后代会与淋巴结俘获的抗原进行测试。不能结合的细胞很快就会死去。
1701067099
1701067100
存活下来的后代被释放到血液中,其中一些会遇到抗原并与其结合,有时候会比它们的母细胞结合得更紧密。这些激活的B细胞同样又被输送到淋巴结,在那里产生出自己的后代。这也就是为什么当你病了的时候淋巴结会肿大,因为它在大量产生淋巴细胞。
1701067101
1701067102
1701067103
1701067104
1701067105
▲图12.3 通过与抗原结合和接收T细胞的“发动”信号激活B细胞的示意图。信号刺激B细胞产生和释放抗体(y形分子)
1701067106
1701067107
这个循环不断进行,与抗原匹配得越好的B细胞产生的后代也越多。简而言之,这就是一个自然选择过程,B细胞群体进化出能与目标抗原紧密结合的受体形状,从而使得通过选择“设计”出来攻击特定抗原的抗体武器库不断扩大。
1701067108
1701067109
这个侦测和摧毁过程一般需要数天或数周时间才能将目标病原体从身体中清除干净。
1701067110
1701067111
这种策略起码存在两个潜在问题。首先,免疫系统如何防止淋巴细胞错误攻击身体自身的细胞?其次,免疫系统在对身体的伤害作用太大时如何停止或调整攻击?
1701067112
1701067113
免疫学家们还没有完全弄清这些问题,现在这些问题都还是活跃的研究领域。有人认为避免攻击自身的一个主要机制是所谓的负选择(negative selection)。当淋巴细胞产生出来时,它们不会被立即释放到血液中去,它们会在骨髓和胸腺中进行测试,与身体自身的分子进行接触。与“自身”分子紧密结合的淋巴细胞可能会被杀死或对基因进行“编辑”以改变受体。也就是说免疫系统只使用不会攻击自身的淋巴细胞。这个机制经常会失效,有时候会产生出糖尿病或类风湿性关节炎这类自身免疫性疾病。
1701067114
1701067115
另一个防止自身免疫攻击的主要机制可能是调节性T细胞(regulatory T cells)的作用。调节性T细胞是T细胞的一个特殊亚种。目前还不清楚调节性T细胞是如何工作的,只知道它们通过某种化学机制抑制其他T细胞的活动。还有一种可能的机制是B细胞之间对一种有限资源的竞争 [170] ——一种称为B细胞刺激因子(BAFF)的特殊化学物质,B细胞需要它才能存活。在负选择过程中漏网并且仍然与自身分子紧密结合的B细胞,由于总是与自身分子结合在一起,因此比其他B细胞需要更多的BAFF。对这种有限资源的竞争导致结合自身分子的B细胞死亡的可能性增加。
1701067116
1701067117
虽然免疫系统攻击外来病原体,但它也还是有义务在攻击的毒性和尽可能防止伤害身体之间进行平衡。免疫系统使用了一系列机制来实现这种平衡(目前对这些机制还知之甚少)。其中许多机制都依赖于一组信号分子,被称为细胞因子(cytokines)。对身体的伤害会导致细胞因子的分泌,细胞因子会抑制活跃的淋巴细胞。可能伤害越严重,细胞因子的浓度就越高,活跃的细胞也就越有可能遇到它们,从而被关闭,达到调节免疫系统的目的,而不用对整个免疫系统进行抑制。
1701067118
1701067120
蚁群
1701067121
1701067122
第1章曾说过,蚁群与大脑很相似。都可以看作由相对简单的个体(神经元、蚂蚁)组成的网络,并且涌现出宏观尺度上的信息处理行为。有两个例子表现出蚁群的这种行为,一是以最佳和适应性的方法搜寻食物的能力,以及适应性地根据蚁群整体的需要分配蚂蚁执行各种工作。这两种行为都是在没有中央控制的情况下完成的,所使用的机制与前面描述的免疫系统惊人的相似。
1701067123
1701067124
大部分蚂蚁种类的食物搜索大致是这样进行的。 [171] 蚁群中搜寻食物的蚂蚁随机朝一个方向搜索,如果遇到食物,就返回蚁穴,沿途留下作为信号的化学物质——信息素(pheromones)。当其他蚂蚁发现了信息素时,就有可能会沿着信息素的轨迹前进。信息素的浓度越高,蚂蚁就越有可能跟着信息素走。如果蚂蚁找到了那堆食物,就会返回巢穴,将信息素的轨迹增强。如果信息素的轨迹得不到增强,就会消失。通过这种方式,蚂蚁一起创造和沟通关于食物位置和质量的各种信息,并且这种信息还会适应环境的变化。存在的轨迹和强度很好地表达了搜索蚁协同发现的食物情报(图12.4)。
1701067125
1701067126
1701067127
1701067128
1701067129
▲图12.4 蚁迹(Flagstaffotos版权所有,经许可重印)
1701067130
1701067131
蚁群的任务分配也是以分散方式进行的。生态学家戈登(Deborah Gordon)曾研究过红色收割蚁(Red Harvester ants)的任务分配。 [172] 蚁群中的工蚁分为四个工种:搜寻食物、维护蚁穴、巡逻和垃圾处理。执行各种任务的工蚁数量能随着环境变化。戈登发现,如果蚁穴被稍微搅乱,维护蚁穴的工蚁数量会增加。如果附近的食物源很多,质量很好,搜寻食物的工蚁数量就会增加。单只蚂蚁可以根据蚁穴环境的变化做出适应性响应,决定采取哪种工作,无需另外的蚂蚁来指挥,每只蚂蚁也仅与其他少数蚂蚁交互,它们是如何做到的呢?
1701067132
1701067133
答案可能是蚂蚁根据它们周围的环境以及它所遇到的执行各种任务的蚂蚁比例来决定自己干什么。比如,一只闲逛的蚂蚁——目前什么也没有做——在蚁穴附近遇到了杂物,它执行蚁穴维护工作的概率就会增加。另外,如果它发现很多维护蚁穴的工蚁在进进出出,也会增加执行蚁穴维护工作的概率;因为这种活动的增加表明有重要的蚁穴维护工作在进行。类似的,维护蚁穴的工蚁如果遇到了很多搜寻食物的蚂蚁带着种子返回蚁穴,就会增加它转向搜寻食物工作的概率;因为种子搬运信号的增加表明发现了高质量的食物源,需要进行采集。显然,通过用触须与其他蚂蚁交流,侦测与各项工作有关的特殊化学物质,蚂蚁就能知道其他蚂蚁在做什么。
1701067134
1701067135
类似的这种利用信息素与其他个体直接交互的机制可能也是其他种类蚂蚁和社会昆虫集体行为的基础,例如第1章中看到的蚂蚁用身体搭桥和构建庇护所, [173] 这些行为的许多方面还有待进一步研究。
1701067136
1701067138
生物代谢
[
上一页 ]
[ :1.701067089e+09 ]
[
下一页 ]