1701067970
为什么进化喜欢具有小世界特性的大脑网络呢?弹性可能是一个重要原因:我们知道神经元会不断死去,但幸运的是,大脑仍然能正常运转。大脑的中心节点则是另一回事:比如海马区(负责短时记忆的网络的中心),如果受到击打或是疾病侵袭,后果将会是毁灭性的。
1701067971
1701067972
另外,研究者还猜测,连接度的无尺度分布使得大脑可以在两种大脑行为之间达成最佳妥协:信息在视觉皮层或语言区等局部区域的处理,以及信息的全局处理,例如视觉皮层的信息传递到语言区,或者反过来。
1701067973
1701067974
如果每个神经元或是所有功能区相互之间都有连接,在这些连接上传递信号耗费的能量将大得惊人。进化可能选择了能效更高的结构。另外,如果那样大脑的体积也要大得多。另一方面,如果大脑中没有长程连接,则不同区域之间的通信会困难得多。人类的脑容量——以及相应的颅骨大小——似乎在大小上形成了精妙的平衡,要大到足以进行复杂的认知,同时又要小到可以让母亲生下来。有观点认为正是小世界特性让这种平衡得以达成。
1701067975
1701067976
科学家们普遍认为,同步——神经元群不断同时激发——是大脑中信息高效传播的主要机制,而小世界结构极大地促进了这种同步的产生。
1701067977
1701067979
基因调控网络 [240]
1701067980
1701067981
第7章曾讲过,人类大约有25000个基因,与拟南芥的基因数量差不多。人类之所以比植物复杂,不在于基因数量,而在于基因如何相互作用。
1701067982
1701067983
有很多基因的作用就是调控其他基因——即决定受调控的基因是不是表达。一个著名的基因调控的例子就是大肠杆菌乳糖代谢的控制。这种细菌通常以葡萄糖为食,但也能代谢乳糖。细胞要代谢乳糖必须有三种特定的蛋白酶,每种都由单独的基因编码。我们先称这些基因为A、B和C。另外还有一种乳糖抑制蛋白(lactose repressor),能够与基因A、B、C结合,从而关闭这些基因。如果在细菌的周围没有乳糖,乳糖抑制蛋白就会不断产生,从而不发生乳糖代谢。但如果细菌突然发现周围没有葡萄糖,而乳糖又很多,乳糖分子就会与乳糖抑制蛋白结合,让其离开基因A、B和C,这些基因就能产生酶,从而进行乳糖代谢。
1701067984
1701067985
有些调控机制还要复杂精巧得多,这些调控作用是遗传复杂性的精髓。早在20世纪60年代,考夫曼(Stuart Kauffman)在研究调控机制时就利用了网络的思想(详见第18章)。最近,网络科学家和遗传学家又一起合作发现,至少有一些调控网络接近于无尺度。在调控网络中,节点代表单独的基因,边则代表基因之间的调控关系(如果有的话)。
1701067986
1701067987
稳健性对于基因调控网络也很重要。基因转录和调控的过程远不是完美的;它们难免犯错,而且经常受病毒等病原体的侵袭。无尺度结构能让系统基本上不受这些错误影响。
1701067988
1701067989
代谢网络
1701067990
1701067991
第12章曾讲过,大部分生物的细胞都有上百种代谢途径,代谢途径之间相互作用,形成代谢反应网络。巴拉巴西和他的同事仔细研究了43种生物的代谢网络结构, [241] 发现它们都符合幂律分布——也就是说,是无尺度网络。代谢网络中的节点是化学反应物——化学反应的原料和产物。如果某种反应物参与了生成另一反应物的反应,就认为前者连接到后者。例如,在糖酵解这种代谢途径的第二步,葡萄糖—6—磷酸(glucose—6—phosphate)生成果糖—6—磷酸(fructose—6—phosphate),因此在网络中前一反应物有边连接到后一反应物。
1701067992
1701067993
既然代谢网络是无尺度的,就有少数中心节点是许多种反应的产物,涉及许多不同的反应物。结果发现,在所研究的所有生物中,这些中心节点代表的化学物质基本都是一样的——对生命最重要的化学物质。有假说认为,代谢网络之所以演化出无尺度特性,是为了确保代谢的稳定性,并优化不同反应物之间的“通信”。
1701067994
1701067995
流行病
1701067996
1701067997
20世纪80年代初,艾滋病流行的早期阶段,美国疾控中心(Centers for Disease Control)的流行病学家发现,有一个群体将艾滋病毒传播到了全世界许多城市的男同性恋,这群人中包括一位加拿大空乘——盖坦·杜格斯(Gaetan Dugas)。杜格斯后来被媒体蔑称为“零号病人”,北美第一个艾滋感染者,认为他对艾滋病毒在美国等地的传播负有责任。虽然后来的研究否认了杜格斯是北美的传染源, [242] 但毫无疑问杜格斯感染了许多人,他承认自己每年都有上百个不同的性伴侣。用网络的术语说,杜格斯是性关系网络的中心节点。
1701067998
1701067999
研究性传播疾病的流行病学家经常需要研究性关系网络,这个网络中的节点代表人,边则代表人之间的性伴侣关系。最近,一个由社会学家和物理学家组成的团队分析了瑞典性行为调查数据, [243] 结果发现得出的网络为无尺度结构;其他对性关系网络的研究也得出了类似结论 [244] 。
1701068000
1701068001
在这种情形下,移除中心节点就对我们有利。专家建议,安全性行为宣传、疫苗接种等干预措施应当主要针对这类中心节点。
1701068002
1701068003
但是得不到性关系的数据,绘制不出整个网络,又如何能识别出中心节点呢?
1701068004
1701068005
另一个网络科学家团体提出了一个巧妙而简单的方法 [245] :从风险人群中随机选取一组人,让他们每人提供一位性伴侣的名字。然后给这些性伴侣接种疫苗。性伴侣很多的人出现在名单中的概率会很高,从而通过这种方案被接种疫苗。
1701068006
1701068007
当然这种方法也可以用到其他场合,用来进行“中心节点打靶”,比如对付通过电子邮件传播的病毒:对于这种情况,杀毒应当重点针对邮件通信录很长的用户的计算机, [246] 而不是寄希望于所有计算机用户都能查杀病毒。
1701068008
1701068009
生态与食物网
1701068010
1701068011
在生态学中,食物链的传统概念已经转变成食物网(food web)的概念,食物网中的节点代表物种或物种群;如果物种B是物种A的食物,就有一条边从节点A连接到节点B。图16.1展示了一个食物网的简单例子。
1701068012
1701068013
1701068014
1701068015
1701068016
▲图16.1 食物网示例[图例来自美国地质勘探局阿拉斯加科学中心(USGS Alaska Science Center, http://www.absc.usgs.gov/research/seabird_foragefish/marinehabitat/home.html)]
1701068017
1701068018
绘制各种生态系统的食物网一直是生态学的重要内容。最近,科学家们开始用网络科学来研究食物网,深入理解生物多样性以及破坏生物多样性会带来的可能后果。
1701068019
[
上一页 ]
[ :1.70106797e+09 ]
[
下一页 ]