打字猴:1.70106808e+09
1701068080 复杂 [:1701064827]
1701068081 第17章 比例之谜
1701068082
1701068083 前两章我们看到,网络的思想对许多科学领域都有深刻影响,尤其是生物学。就在不久前,网络思想又为生物学中一个最让人费解的难题提出了新的解答:生物的大小变化时其他属性会如何变化。
1701068084
1701068085 复杂 [:1701064828]
1701068086 生物学中的比例缩放
1701068087
1701068088 比例描述的是一个属性改变时,其他相关的属性会如何改变。生物学的比例之谜关注的则是生物在休息时消耗的平均能量——基础代谢率——随着生物体重的变化会如何变化。细胞将食物、空气和光照转化为能量的代谢过程是所有生物系统的关键,因此体重与代谢的关系对于理解生命的运作极为重要。
1701068089
1701068090 人们很早就发现,相对于体重大小来说,较小动物的代谢率比较大的动物更快。1883年,德国生理学家鲁伯纳(Max Rubner)尝试从热力学和几何的角度来确定准确的比例关系。第3章曾提到过,代谢过程要将能量从一种形式转化成另一种形式,因此总是会发热。生物的代谢率可以定义为细胞将营养转化为能量的速率,能量用于细胞的运作和生成新细胞。在这个过程中生物会以同样的速率散发热量。因此通过测量生物产生的热量就能推导出代谢率。
1701068091
1701068092 如果你之前不知道较小动物的代谢率相对比较大的动物更快,你很可能会想代谢率是不是与体重呈线性比例关系——例如,仓鼠的体重是老鼠的8倍,那么代谢率也应该是老鼠的8倍,或者举个极端点的例子,河马的体重是老鼠的125000倍,那么代谢率也应该是老鼠的125000倍。
1701068093
1701068094 问题是,如果这样,仓鼠产生的热量也应该是老鼠的8倍。但是散热要通过表皮,而仓鼠的表皮面积只是老鼠的4倍。这是因为动物的表皮面积并不正比于动物的体重(同样也不正比于体积)。
1701068095
1701068096 图17.1说明了这一点,图中老鼠、仓鼠和河马用球体表示。你也许还记得中学几何学过球体的体积公式是(4/3)π乘以半径的立方,其中π≈3.14159。而球体的表面积公式是4π乘以半径的平方。因此“体积与半径的立方呈比例”而“表面积与半径的平方呈比例”。这里“呈比例”的意思也就是“正比于”——也就是说忽略常数(4/3)π和4π。从图17.1中可以看到,仓鼠球体的半径大约是老鼠球体的2倍,因此表面积是老鼠球体的4倍,而体积则是老鼠球体的8倍。河马球体的半径是老鼠球体的50倍(没有按比例画),因此河马球体的表面积是老鼠球体的2500倍,而体积则是老鼠球体的125000倍。可以看到,随着半径增大,表面积的增长要比体积慢得多。因为表面积与半径平方呈比例,而体积与半径立方呈比例,因此我们说“表面积与体积的2/3次幂呈比例”。  [265]  (推导过程见注释。)
1701068097
1701068098
1701068099
1701068100
1701068101 ▲图17.1 动物的比例特征(用球体表示)(David Moser绘图)
1701068102
1701068103 体积的2/3次幂的意思就是“体积平方,然后开3次方”。
1701068104
1701068105 表皮面积只大4倍,通过表皮发的热却要大8倍,这只仓鼠肯定不是一般的热。同样,河马的表皮面积比老鼠大2500倍,发的热却是老鼠的125000倍。天哪!这只河马恐怕会烧起来。
1701068106
1701068107 大自然非常仁慈,它没有这样做。谢天谢地,我们的代谢率与我们的体重不是呈线性比例。鲁伯纳推测,为了安全地发散热量,大自然让我们的代谢率与体重的比例关系同表皮面积一样。他提出代谢率同体重的2/3次幂呈比例。这就是所谓的“表皮猜想(surface hypothesis)”,此后50年这个猜想被广泛接受。唯一的问题是实际数据并不与之相符。
1701068108
1701068109 20世纪30年代,瑞典动物学家克莱伯(Max Kleiber)仔细测量了一系列动物的代谢率。他的数据表明代谢率与体重的3/4次幂呈比例。也就是说,代谢率正比于体重  3/4  。你肯定注意到了这就是一个指数为3/4的幂律。这个结果出人意料。指数为3/4而不是2/3,这意味着动物——尤其是较大的动物——的代谢率比人们预想的要高,这也意味着动物比先前根据几何简单预计的要更高效。
1701068110
1701068111 图17.2展示了各种动物的这种比例关系。横轴表示体重(单位:千克),纵轴则表示平均基础代谢率(单位:瓦)。图中黑点表示各种动物的实际测量值,直线则表示与体重的3/4次幂呈比例的代谢率曲线。数据与曲线没有精确匹配,但也符合得很好。图17.2是一种特殊的图——专业上称为双对数(或对数—对数)图——图中两条轴都是以10次幂增长。在双对数图上幂律曲线表现为直线,而直线的斜率则等于幂律的指数。  [266]  (见注释中对此的解释。)
1701068112
1701068113
1701068114
1701068115
1701068116 ▲图17.2 各种动物的代谢率与体重的关系[引自施密特—尼尔森的《比例:为什么动物的大小如此重要?》(K.Schmidt-Nielsen, Scaling:Why Is Animal Size So Important?),剑桥大学出版社1984年出版。经剑桥大学出版社许可重印]
1701068117
1701068118 这个幂律关系现在被称为克莱伯定律(Kleiber’s law)。最近有研究发现,3/4次幂比例不仅对哺乳动物和鸟类成立,对鱼类、植物,甚至单细胞生物也成立。
1701068119
1701068120 克莱伯定律是建立在对代谢率和体重的测量的基础上,克莱伯没有解释这个定律为什么成立。结果克莱伯定律一直困扰着生物学家们。生命系统的重量范围很大,细菌不到万亿分之一克,鲸鱼则可能超过10万千克。这个规律不仅违背简单的几何推理,适用范围也大得惊人,涵盖各种大小的生物,也适用于各种生物类型和生境。到底是生物的哪种共性导致了这个简单而优雅的规律呢?
1701068121
1701068122 其他一些相关的比例关系也一直让生物学家们感到困惑。例如,越大的哺乳动物生命期越长。老鼠的生命期一般为2年左右,猪的生命期则大约为10年,大象超过50年。其中也有例外,特别是人类,但是对大部分哺乳动物都成立。如果画出许多物种的平均生命期和体重的关系,会发现是指数为1/4的幂律。如果画出平均心率与体重的关系,你会得到指数为-1/4的幂律(越大的动物心率越慢)。生物学家们发现了大量的幂律关系,都是分母为4的分数指数。因此,这些关系也被称为四分幂比例律(quarter-power scaling laws)。许多人怀疑,这些四分幂比例律意味着这些生物具有某种非常重要的共性。但是没人知道是什么共性。
1701068123
1701068124 复杂 [:1701064829]
1701068125 一次跨学科合作
1701068126
1701068127 20世纪90年代中期,新墨西哥大学的生态学教授布朗(James Brown)多年来一直在研究四分幂比例律。他很早就意识到,如果能解决这个问题,理解这些普适比例律的原理,对于发展出生物学的一般理论将很重要。一位对比例问题很着迷的生物学研究生恩奎斯特(Brian Enquist)加入了布朗的团队,他们开始尝试一起来攻克这个问题(图17.3)。
1701068128
1701068129 布朗和恩奎斯特怀疑,向细胞输送营养的系统结构是解决这个问题的关键。血液不断在血管中循环,血管形成了一个树状网络,将营养物质输送到身体的所有细胞。同样,在肺部是由支气管组成的分支结构将氧气输送到血管提供给血液(图17.4)。布朗和恩奎斯特认为正是这种在动物体内普遍存在的分支结构导致了四分幂律。要理解这种结构为何会导致四分幂律,就得用数学描述这种结构,并从数学上证明这种结构直接导致了观察到的那些比例律。
[ 上一页 ]  [ :1.70106808e+09 ]  [ 下一页 ]