打字猴:1.701071702e+09
1701071702 人和机器互动的结果就是人类之间互动的减少,这种趋势已经在过去一个世纪里不断增长(我们早已忘了曾经有电话接线员,曾经有专门的打字秘书等)。这种趋势在人工智能时代还会继续加强,直到很多人,尤其是老人将只能跟机器互动。机器会打理你的房子,会帮你办杂事,会关注你的健康,还会跟你娱乐……这会极大地降低你跟其他人的互动,甚至包括你的家人(意味着家庭支持也会变得越来越不重要)。你将只有很少几个朋友,你的同事会是机器人,你的朋友也会是机器人。我们不禁思考,如果我们不再跟人类互动之后,人性到底会发生什么改变。
1701071703
1701071704
1701071705
1701071706
1701071707 人类2.0:在硅谷探索科技未来 硅谷声音
1701071708
1701071709 斯图尔特·罗素:未来20年,将人类的价值体系教给机器人
1701071710
1701071711 英裔美籍计算机科学家斯图尔特·罗素(Stuart Russell)是加州大学伯克利分校人工智能系统中心创始人兼计算机科学专业教授,同时他还是人工智能领域“标准教科书”——《人工智能:一种现代的方法》(英文书名为Artifical Intelligence A Mooern Approach,清华大学出版社,2013年11月出版)的作者,被誉为“世界顶级AI专家”。
1701071712
1701071713 我们在加州大学伯克利分校他的办公室见到了他,罗素认为,机器人未来发展的关键是,人类要将是与非、好与坏的常识和价值判断标准教给机器人。比如现在大家都对能做家务的服务型机器人青睐有加,但是,如果要真正保障安全性,这个机器人就需要具备很多常识。比如,它要知道主人的猫是不能用来做晚饭的。
1701071714
1701071715 确保人和机器拥有共同的目标
1701071716
1701071717 由于不了解,机器人会取代人类,甚至杀死人类的声音不绝于耳,公众对人工智能有太多误解。人们总是不自觉地把人工智能和杀人联系在一起,事实上,这个领域可没有人研究杀人机器人。还有一个原因是,媒体没有向大众解释人工智能到底是什么,媒体只是一天到晚在说人工智能总有一天会失控,或者人工智能会有自我意识……这些都是不可能的。
1701071718
1701071719 AlphaGo大胜人类引发了对人工智能的又一轮恐慌。相反,我对AlphaGo很失望。AlphaGo实验的初衷是想知道人工智能能否像人类下围棋一样思考,即给你一个复杂的难题,你需要解决不同区域的小问题,最后综合起来解决大问题。然而,实际操作上,谷歌的AlphaGo用的方法还是传统的机器战胜象棋高手的方法(IBM的深蓝早已在1997年做到),即学习尽可能多的“每下一子后最理想的下一子是什么”(靠用大数据学习已有围棋棋局),这种方法叫蒙特卡洛树搜索(Monte Carlo Tree Search)法,我们姑且把这个方法叫“种树”。即便如此,机器也只“种了部分的树”,远远没有学习完围棋棋局所有的可能性,当然,靠“种足够长的部分枝干”赢过人类已经足够了,但这种方法无疑是有缺陷的,甚至是错误的。从本质上来说,由于根本没有也无法证明人工智能可以像人类那样下围棋,这个实验其实是失败的。
1701071720
1701071721 这个问题其实早在1960年就被提出来了,人工智能的危险到现在也没有发生。人工智能会带来危险的一个很重要的原因是,人类其实很不擅长表达自己想要什么,人们经常会误解自己的愿望或者不知道如何正确表达。在和机器人交流时,人类的措辞必须全面而准确。比如,当你对一个人说:“你能找到消灭癌症的方法吗?”对方能够理解这意味着什么,但是当我们告诉机器人时,就需要清楚地申明,我们的目标是:“在保存人类的前提下消灭癌症。”
1701071722
1701071723 另外,很多人习惯从今天还不够成熟的人工智能系统来推断未来的人工智能,自然也会得出不成熟的结论。而且,大多数人都不理解未来机器人会拥有的超智能是什么,超智能不同于我们以前见过的任何东西。举例来说,如果以后机器人能够理解人类的语言了,那意味着什么呢?意味着一个机器人在短时间内就能阅读和理解人类写过的任何东西了。一个正常人可能一周只能读一两本书,一生能读的书数量也是有限的,但是这台机器能读完世界上存在的所有书籍,关于物理学、生物学、化学、医学、历史、诗歌、爱情小说等的所有读本,人类所知道的一切它都能理解。
1701071724
1701071725 这样一台真正“博学”的超智能机器自然会想出很多你从未想过的东西,以你根本想不到的方式和计划帮你实现目标。但关键就是要让机器人准确理解目标到底是什么,赋予它一个具体化的目标。仅仅说“我是个聪明人,我绝不会为找出治疗癌症的方法而杀死世界上所有人”这样的话是没有用的。
1701071726
1701071727 现在有两个问题:第一,我们要花多长时间才能造出这样的超智能机器?第二,我们如何把这些机器控制在安全范围内,确保它们“循规蹈矩”?比尔·盖茨、埃隆·马斯克和我都认为,造出了超智能机器后,解决第二个问题就很关键,就要确保我们给机器人的目标高度符合人类的目标。
1701071728
1701071729 关于这一点,机器人首先需要明白,它们可能会得出一些解决问题的方案,但是人类可能会不认同。这种情况下,正确的做法应该是人和机器进行沟通。比如,如果想解决全球变暖问题,机器人需要去探索各种可能性,最终得出一个让人类信服的结论。
1701071730
1701071731 当然,为了让机器充分理解人类的目标和人类想要的东西,我们首先需要解决自然语言处理的问题。从技术层面上来说,制造超智能晶体管应该不是什么难事,比起以前来说要容易得多。这是值得投资的领域,也是我现在正在做的事。
1701071732
1701071733 我的团队正在研发能让机器学会人类基本价值体系的方法。问题是,很多常识类的东西人类是不会说出来的,比如,没有人会每天走来走去告诉别人我很喜欢自己的左腿,不想失去它。但对机器人来说,这不是什么显而易见的事。我们需要把这些人类不会说出来的事情明白无误地告诉机器人。再比如,现在大家都对能做家务的服务型机器人青睐有加,但是,真正要保障安全性的话,这个机器人就需要具备很多常识,比如,它要知道主人的猫是不能用来做晚饭的。确实,猫肉营养丰富,蛋白质含量很高,价格也不贵,但是相比其营养价值,宠物猫的情感价值更重要。如果机器人不明白这一点,就会煮了宠物猫,而这样的事情只要发生一桩,就会带来整个产业的末日。
1701071734
1701071735 如果机器提前学习过类似的案例,知道人类通常是如何选择的,就可以根据人类的行为进行价值评估,这也是我们在做的研究。我们最终会研究人类的一切行为。世界上大多数书都会讲到人类做了什么,什么让他们开心,什么让他们不开心。大量的电视节目也都是关于人类行为的内容,这些学习资料触手可得,通过观察他人行为和解释发生的现象来学习和内化新的知识,这也是人类学习的方式。不过,机器学习最经典的方法是给它们展示各种行为,然后再让它模仿。
1701071736
1701071737 20年,如何让你的机器人懂你
1701071738
1701071739 如果说10年时间才能解决机器人理解人类语言的问题,也就是自然语言处理问题,我觉得20年才可以解决价值体系这个问题。如果我有一家机器人公司,未来想研发出能一起出去玩、一起逛街的机器人,我唯一需要的就是赋予它一个价值体系,未来也肯定会有专门销售价值体系的公司。最现实的案例是,无人驾驶汽车就需要一个“价值观”。因为无人驾驶汽车需要在安全和速度之间权衡,需要在撞伤乘客、撞伤行人、撞坏车之间权衡,而权衡这一切就需要有个价值判断准则。因为无人驾驶汽车是在真实世界运行的,不像工厂里的机器人,是关起来、受控制的。
1701071740
1701071741 家用机器人也可能会出现类似的情况,随着我们在虚拟语言助理方面的进步,我觉得这方面的市场潜力会很大。家用机器人未来可以非常有用,可以帮助你处理各种事情,但要真正信任它的服务,它必须要“懂”你,它需要知道你有男朋友、有父母、是一名员工等所有重要的人际关系,需要知道有很多东西你会和男朋友分享,但不会和你的同事分享等,若想做出正确的选择,这个机器人必须懂你,必须理解它的所作所为到底能不能让你开心。
1701071742
1701071743 在机器人学会人类的价值体系之前,人类的很多工作还是不会被机器人取代的。当然,很多现在“把人当机器用”的工作,以后可能就会彻底消失。而需要很多直接沟通和交流的工作反而不会被机器人取代,比如教师、护士等。至少,我不想让自己的孩子由一个机器人教导,也不希望自己生病的时候身边没有一个人类护士来陪伴照料。
1701071744
1701071745 长期来看,对食物、汽车等这种物质上的需要,都可以通过机器生产来满足,而人类将更多从事通过沟通满足他人精神需要的工作,也就是说,未来会有很多新工作涉及人际互动。比如,未来可能会有专门上门陪你吃午餐的人,背后的逻辑是:虽然我只是和你一起吃个午饭,但我既聪明有趣又富有同理心,而且我付出了时间,所以你会心甘情愿付钱给我。
1701071746
1701071747 皮特·阿布比尔:机器人现在到底有多智能
1701071748
1701071749 一个机器人折叠毛巾的短视频在网上红极一时,这名机器人名为“BRETT”(用于解决繁杂任务的伯克利机器人),曾是著名的硅谷机器人制造商Willow Garage生产的PR2机器人。教给它如何叠毛巾的是加州大学伯克利分校计算机科学家皮特·阿布比尔(Pieter Abbeel),他也是如今机器学习领域的领袖专家之一,他用深度强化学习(deep reinforcement learning)的方式教会了机器人用手完成难度很高的新技能,除了叠毛巾,还包括从冰箱里顺利接过不同的物体等。2016年4月,皮特加入了由埃隆·马斯克等诸多硅谷知名企业家创建的人工智能非营利机构OpenAI。
1701071750
1701071751 38岁的皮特看起来很年轻,穿着简单的T恤和牛仔裤,在办公室匆忙吃了份盒饭午餐后,他先带我们参观了机器人学习实验室(Robot Learning Lab),BRETT人形机器人以及其他工业机器人等都是从这里培育出来的。整个实验室安静又杂乱,研究人员的办公位置散落在几台机器人附近,白板上画着各种复杂的符号和公式。
[ 上一页 ]  [ :1.701071702e+09 ]  [ 下一页 ]