1701072397
1701072398
加州大学圣地亚哥分校的汪少杰(Joseph Wang)、张良方以及他们的学生高伟发明了一种能够自推进的纳米机器人。他们的纳米机器人放置在老鼠的胃部进行实验,能利用胃部消化时产生的气泡作为自推进的动能,然后纳米机器人再前行到需要“卸货”(药物等)的人体部位去。[9]
1701072399
1701072400
为了创造新的材料,我们需要建造新的分子结构。过去,化学家们为此需要在实验室里跟各种装满奇怪的化学物质的瓶瓶罐罐们打交道。曼彻斯特大学的大卫·利(David Leigh)希望能改变这种工作状况。他想建立一个相当于工厂流水线的纳米制造装置。这个“纳米工厂”需要先有能将物体(分子)捡起来并送到其他地方的纳米机器人,也就是说,大卫·利想要制造一个能移动一个分子的机器人。[10]
1701072401
1701072402
不难看出,纳米技术和生物技术之间有很大关系,有德鲁·安迪这样的生物学家认为,某种程度上,生物技术就是纳米技术。确实,生物学研究一度滞留在分子水平,但生物技术正越来越深入到细胞内部,而纳米技术甚至能让生物技术进入到原子以下的领域。纳米粒子可以改变细胞的行为,而不改变细胞的DNA,这对肿瘤细胞尤其有用。
1701072403
1701072404
形象地说,纳米粒子能变成细胞内部的“特洛伊木马”。例如,2016年,密歇根大学霍华德·佩蒂(Howard Petty)的团队创造了一种纳米粒子,它能以造成细胞新陈代谢短路的方式杀死眼部的肿瘤细胞。[11]
1701072405
1701072406
纳米技术和生物技术之间有着深度互动并不奇怪,有时候两者交融出来的应用是出乎意料的。比如,如果你想用纳米技术制造一个能够保存和延续上万年的数据存储装置,只要先看下大自然的发明:DNA。DNA在非常小的空间里存储了大量的信息,在理想的情况下,真的能做到“万年不朽”。可以说,DNA保存良好的化石就是目前这个星球上“发明”出来的最令人惊叹的存储器,且远在计算机之前就出现了。
1701072407
1701072408
以此为鉴,2015年,瑞士苏黎世联邦理工学院(Swiss Federal Institute of Technology,ETH Zurich)的罗伯特·格拉斯(Robert Grass)制造了一个“人工化石”的样本,并且将阿基米德古代数学的经典《机械定理的方法》和《瑞士1291年宪法》编码储存了进去。
1701072409
1701072410
挑战“室温超导”
1701072411
1701072412
纳米技术如何影响和改变信息技术?在纳米技术作用于信息技术方面,一个重要的领域是“室温超导”,超导是指导电材料在温度接近绝对零度的时候,材料中电阻趋近于0的性质。超导体是能进行超导传输的导电材料,但由于很难在室温下工作,超导体在实际应用中(如磁悬浮火车,医院使用的核磁共振成像机器等)非常昂贵,因为机器上的超导体必须一直被人工冷却。
1701072413
1701072414
如果室温超导能够实现,这将是一个梦幻般的解决方案,因为超导体在导电上“毫无浪费”。如今的电子和电气设备中使用的导线一点也不“超级”,例如,从发电厂传送到普通家庭的电力6%由于电阻而丢失。事实上,超导体的功率把手将不再需要将低压交流电转换为高压交流电,现在电厂需要用大变压器做转换,因为我们需要高压交流电进行长距离的电力传输。
1701072415
1701072416
计算机和手机的电子电路可以用超导体制成的话,将大大节省电能并降低热量。这对交通运输的影响也将是巨大的,我们的下一代铁路都将成为磁悬浮铁路。我们距室温下实现核聚变的梦想会更接近(一直以来,科学家们努力研究可控核聚变,因为核聚变可能成为未来的能量来源。核聚变燃料可来源于海水中富含的氘等氢同位素,所以核聚变燃料是无穷无尽的)。
1701072417
1701072418
今天的核聚变反应堆需要使用特殊的磁铁来产生能触发核聚变所需的强磁场,但与此同时,电线承载的电流温度会呈几何级数迅速上升,由于这个因素并不可控,我们目前在核聚变方面能做的还非常有限,而超导导线将允许我们向磁铁中输送大量的电能,却不用担心爆炸问题。
1701072419
1701072420
虽然有很多科学家们都致力于“室温超导”,但目前还很难说到底取得了多少进步。那么,纳米技术可以创建在室温下工作的超导体吗?2014年,伦敦纳米技术研究中心克里斯·皮卡德(Chris Pickard)的团队和斯坦福大学沈志勋的团队提出了让石墨烯变成超导体的一种方法,但该方法是否会奏效目前还言之过早。
1701072421
1701072422
2014年,德国马克斯—普朗克研究所米哈伊尔(Mikhail Eremets)的团队在比绝对零度高的温度下用氢硫化合物实现了超导性(零下70摄氏度,相对来说,几乎是“室温”)。[12]
1701072423
1701072424
在过去的几年里,为了实现更高温度下(高于绝对零度)的超导,科学家们还把眼光转向了激光技术。2014年,德国马克斯-普朗克研究所的安德烈亚·卡瓦莱里(Andrea Cavalleri)使用激光实现了室温超导……但持续时间只有0.000000000002秒;2016年,同一团队再次成功了,不过这次他们使用的是“富勒烯”分子,而富勒烯分子处于圆筒形时其实就是碳纳米管,也就是说,研究者将这种超导富勒烯加热到103K,但只持续了不到一秒钟的极小的一部分。
1701072425
1701072426
我一直好奇当室温超导体成为常见的材料后会发生什么。科学家们可能还没意识到那也许将会是一场环境灾难,想象一下一堆一堆由我们的电视机、电脑、手机、变压器等组成的垃圾,如果室温超导体被大规模生产了,我建议大家先投资几家可回收电子垃圾的公司吧!
1701072427
1701072428
“拯救”摩尔定律
1701072429
1701072430
纳米技术可以帮助继续维持摩尔定律吗
1701072431
1701072432
摩尔定律允许“更小”和“更强大”共存,这一趋势已成功演化了近50年,但物理学家们清楚地知道,我们目前的水平正在接近物理极限。
1701072433
1701072434
计算机科学开始之初,硬件上的进步都是被军队、太空探索项目等政府机构的需求推动的。计算机是在“二战”之中诞生的,之后的进步主要由NASA或DARPA(全称为Defense Advanced Research Projects Agency,美国国防部高级研究计划局)推动。DARPA是美国国防部重大科技攻关项目的组织、协调、管理机构和军用高技术预研工作的技术管理部门,主要负责高新技术的研究、开发和应用。如果不是这些大的政府机构,那也会是一些大的计算机巨头公司来推动硬件变革,因为只有它们有执行大量计算的需求和巨额投资能力。
1701072435
1701072436
我们这个时代发生的一个重大变化是,硬件不断改变的压力来自消费类电子产品。NASA、DARPA和一些大公司根本不在乎“浪费电”来运行大型计算机,但消费类电子产品的广大用户们承受不了,他们想要越来越小的计算机。
1701072437
1701072438
正是摩尔定律让我们使用的电子装备发生了翻天覆地的变化。几乎每十年,电脑都会“大变身”。从20世纪60年代的大型主机到70年代的小型机,从80年代的个人电脑至90年代的笔记本电脑,再到2000年后无处不在的智能手机。如今正在发生的变革则是为物联网而生的嵌入式处理器。
1701072439
1701072440
我们一直认为,下一个十年也会因新一代计算机设备的诞生而完全不同,但是,如果摩尔定律“失灵”了怎么办?如果我们所有的电子产品都停留在目前水平又会怎样?后果大概就会像高速行驶的火车骤然停下一样。
1701072441
1701072442
事实是,摩尔定律从2005年英特尔和AMD推出他们的第一个“双核”处理器时就已经开始失灵了,因为摩尔定律最初就是对能被“挤”进一个电子芯片的电子元件(晶体管)的数量而言的(1971年,英特尔推出的全球第一颗通用型微处理器4004,由2 300个晶体管构成。当时,公司的联合创始人之一戈登·摩尔提出后来被业界奉为信条的摩尔定律——每过18个月,芯片上可以集成的晶体管数目将增加一倍,意味着运算速度即主频就更快)。2000年开始,我们才将摩尔定律跟芯片的计算能力联系起来。英特尔2015年推出的“Xeon Haswell-EP”处理器声称具有55亿个晶体管,计算能力大大提升,事实是它具有“18核”。最初的微处理器基本上是一台电脑对应一个芯片,“双核”乃至“多核”微处理器其实是将多台电脑放在一个芯片上,即在一枚处理器中集成两个或多个完整的计算引擎(内核)。
1701072443
1701072444
此外,单个晶体管的价格自从因为台湾半导体制造公司(TSMC)2011年推出了28纳米(28nm)芯片后其实是在上涨,而不是下降。2012年以后,英特尔就开始用不同的晶体管了,即“三栅极”晶体管。也有很多人将其称为“FinFet”(鳍式场效应晶体管,是一种新的互补式金氧半导体晶体管)晶体管,它最初是加州大学伯克利分校的胡正明(Chenming Hu)教授1998年发明的,胡正明的一个学生崔梁圭(Yang-Kyu Choi)在韩国科学技术院(KAIST)创建了纳米技术实验室,之后在FinFet晶体管上开创了一个又一个纪录。
1701072445
1701072446
2015年,英特尔发布第六代微处理器Intel Skylake,采用14纳米制程(比Intel 4004处理器强大40万倍),之后,英特尔却宣布其10纳米处理器Cannonlake将被推迟至2017年。14纳米也好,10纳米也好,“纳米”规模说的都是芯片上晶体管之间的间隔距离。英特尔第一个微处理器英特(Intel 4004)的晶体管间距是1万纳米,约有一根头发的十分之一宽。经过几十年的压缩后,如今达到14纳米。在这个尺度上再往下操作的难度和成本实在是太大了。
[
上一页 ]
[ :1.701072397e+09 ]
[
下一页 ]