打字猴:1.701072479e+09
1701072479
1701072480 再造计算机
1701072481
1701072482 纳米技术能否帮助再造计算机
1701072483
1701072484 制造计算机还有别的方法,可以用忆阻器替代晶体管,这尤其有望推动模拟存储和人工智能领域的进步。
1701072485
1701072486 不过,在短期内,纳米技术对计算机的主要贡献实际上是存储设备。如今我们的计算机使用的是一种称为“D-RAM”的动态随机存取存储器,但它很不稳定,当你关闭设备时,所有信息都会丢失,你需要“保存”正在进行的工作到磁盘中去,当你再次打开设备时,这些信息必须再从磁盘复制回内存器里,这也是为什么数字设备需要“启动”。
1701072487
1701072488 改变这种情况的方法是,使用忆阻器代替晶体管,忆阻器是一种稳定的元件,当电源关闭时它们不会失去正在处理的信息。简单地说,忆阻器是一种有记忆功能的非线性电阻。早在1971年,加州大学伯克利分校的蔡少棠(Leon Chua)就提出了可能存在可以测量电流的第四种电子元件——忆阻的理论。但要证明忆阻理论,需要在纳米尺度上进行操作。
1701072489
1701072490 得益于纳米技术的推动,2008年,惠普的斯坦·威廉斯(Stan Williams)证明了“忆阻器”的存在和实用性。忆阻器不是电阻器,不是电容器,也不是电感器,它是第四种电子元件,具备的属性是原来的三种电子元件以任意方式组合都不能得到的,具备其他电子元件没有的诸多优点。忆阻器的表现就像大脑中的突触一样,其特性取决于曾有多少电流经过它,就像突触的“实力”取决于它们是否被经常使用一样。
1701072491
1701072492 目前的人工神经网络并非硬件设备,它们是在数字计算机上运行的软件算法。如今人工智能所有的“深度学习”系统,事实上也都是在数字计算机上运行的计算机数学。然而,数字计算机运行的是二进制逻辑,信息需要被转化成用0和1表示的一串数字信号,不管能转换的数字多么精确,都无法最完整地呈现原始信息,而模拟信号却能完整呈现,忆阻器具备的“模拟”特性以及它与突触的相似性决定了它可能是构建人工神经网络的更好乃至绝佳材料。
1701072493
1701072494 有很多科学家在这方面进行了探索和尝试。2010年,密歇根大学的科学家们首次将半导体神经元和忆阻器突触放到了一起。[16]
1701072495
1701072496 2015年,加州大学圣巴巴拉分校德米特里·斯特鲁科夫(Dmitri Strukov)的研究团队建成了一个人工神经网络,由约100个用金属氧化物忆阻器做成的人工突触组成。[17]
1701072497
1701072498 2015年,来自美国新墨西哥州的一名创业者声称他们已经用忆阻器建成了一个模拟芯片,专门应用于机器学习。
1701072499
1701072500 同年,俄罗斯科学家们在曾经开发了苏联核武器的库尔恰托夫研究所(Kurchatov Institute)也建成了由塑料忆阻器做成的人工神经网络。[18]
1701072501
1701072502 如今的磁存储技术也可以从纳米技术中受益。2011年,来自加州圣何塞IBM阿尔马登(Almaden)研究中心的安德烈亚斯·海因里希(Andreas Heinrich)的团队将存储一个比特(a bit)所需的原子数量从原来的100万减少到12个。在实践中,这意味着磁性存储器相比最流行的硬盘和存储器芯片,能带来多达100倍的存储密度。研究者们在操纵单个原子上的技术越来越让人印象深刻,2012年,澳大利亚新南威尔士大学的米歇尔·西蒙斯(Michelle Simmons)和美国普渡大学的格哈德(Gerhard Klimeck)甚至用单个原子(磷原子)创建了一个晶体管。
1701072503
1701072504 帮助制造量子计算机
1701072505
1701072506 纳米技术跟量子计算机有关系吗
1701072507
1701072508 纳米粒子可以同时处于两种状态(同是0和1),这正是量子物理学的特性。因此,纳米技术与量子计算机自然会有交集。
1701072509
1701072510 “量子计算”的概念可以追溯到1982年,由伟大的物理学家理查德·费曼提出,可以通过利用量子叠加原理存储信息。与传统计算机的二进制相比,量子计算的基本单元是原子尺度的单位,即“量子比特”(qubit),它们能够同时是0和1的叠加态。多量子位可以与所谓的“纠缠态”联系到一起,单独的一个量子位的改变就可以影响到整个系统。
1701072511
1701072512 实践中,这意味着一台量子计算机可以同时执行多个并行计算。比如,同时进行多个搜索任务。假如要在1 000本书中搜寻一个特定的记号,普通计算机需要逐一搜寻,而量子计算机可以同时搜寻1 000本书。也就是说,量子计算机可以同时解决多个问题,这种超快速度带来的改变和影响是极具想象空间的。
1701072513
1701072514 1997年,英国物理学家科林·威廉姆斯(Colin Williams)和施乐帕克研究中心的斯科特·克利尔沃特(Scott Clearwater)出版了一本名为《探索量子计算》(Explorations in Quantum Computing)的书,具体描述了如何制造一个量子计算机。
1701072515
1701072516 1999年乔迪·罗斯(Geordie Rose)和亚历山大·扎戈斯金(Alexandre Zagoskin)两位量子物理学家在加拿大创建了D-Wave公司来制造量子计算机。2007年,D-Wave在位于加州山景城的计算机历史博物馆展示了第一台量子计算机样品,虽然很多专家持怀疑态度,但D-Wave还是在2011年出售了第一款商用量子计算机。目前,D-Wave的投资者名单中包括亚马逊的创始人杰夫·贝索斯以及美国中央情报局,它的购买客户则包括NASA和谷歌。
1701072517
1701072518 除D-Wave公司外,目前量子计算机最令人兴奋的研究可能正在2006年成立的联合量子研究所(JQI)进行,该研究所由美国国家标准与技术研究院(NIST)、美国国家安全局(NSA)以及马里兰大学(位于华盛顿特区附近)共同创建。2009年,NIST发布了一个通用可编程的量子计算机,但几乎还没有实际应用,研究成果主要停留在理论层面。
1701072519
1701072520 目前量子计算机方面的主要研究进展包括:2013年,马克·华纳(Marc Warner)的团队在伦敦纳米技术中心发现,染料中名为“铜酞菁”(copper phthalocyanine)的电子在叠加态保留了很长时间,这意味着也许他们发现了适用于量子计算的硅。
1701072521
1701072522 2014年,荷兰代尔夫特理工大学在相隔3米的两个量子比特(quantum bit)之间以零错误率传递了信息,这是一个重大的成就。2015年,NIST在超过100kms(绝对的度量单位)的距离下成功传递了量子信息,NIST的一位科学家大卫·维因兰德(David Wineland)被授予了2015年的诺贝尔奖。
1701072523
1701072524 2016年,马里兰大学克里斯托弗·门罗(Christopher Monroe)的团队推出了五位量子比特模块(five-qubit modules),它可以合并大量的量子比特来创造量子计算机。
1701072525
1701072526 D-Wave此前声称他们已经制造了一个有1 000多个量子位的量子计算机,科学家们对此还是持怀疑态度,但与D-Wave不同的是,克里斯托弗的实验任何大学都可以复制并验证。同样在2016年,IBM将五位量子比特模块的计算机放在了云上,推出基于云的量子计算平台——Quantum Experience。
1701072527
1701072528 制造量子计算机存在两个主要问题。第一个问题是,大部分量子计算机用的是超导电路,因为量子计算在超导状态下更易实现,但是超导需要非常低的温度,同样的问题,在室温超导成为可能之前,冷却过程非常昂贵。第二个问题是,超导量子比特不稳定(这是量子物质的特性)。
[ 上一页 ]  [ :1.701072479e+09 ]  [ 下一页 ]