1701072560
2014年,首尔国立大学的金浩扬(Ho-Young Kim)开始用这种技术来制造纳米物体。科林·拉斯顿(Colin Raston)发明的“涡旋流体设备”(Vortex Fluid Device,VFD),这种设备在制造具有实际应用的精密碳纳米管时非常有用。[20]
1701072561
1701072562
解决这个问题的另一种办法是,将纳米颗粒编程,让它们自己组装成复杂的结构。这种方法也是大自然在处理蛋白质时采用的解决方案。来自美国劳伦斯伯克利国家实验室(Lawrence Berkeley National Laboratory,LBNL)的徐婷正在进行这样的研究。2014年,她发表论文称,已证明纳米粒子可以在一分钟内形成高度“组织”的薄膜。[21]2015年,她与加州大学戴维斯分校的凯瑟琳·费拉拉(Katherine Ferrara)以及加州大学旧金山分校的约翰·佛萨耶斯(John Forsayeth)和克里斯托夫·班奇维兹(Krystof Bankiewicz)合作,正在创造一种可以自组装的纳米粒子,它们能将化学物质输送到大脑中,用以对抗癌症。
1701072563
1701072564
如果目前这些技术中的任意一种能够成功降低纳米制造的费用,那么,纳米技术就可以华丽腾飞。
1701072565
1701072566
[1]Yuan Lu,etc. Assessing Sequence Plasticity of a Virus-like Nanoparticle by Evolution Toward a Versatile Scaffold for Vaccines and Drug Delivery[J]. Proceedings of the NationalAcademy of Sciences,2015,112(40):12360-12365.
1701072567
1701072568
[2]Seiichi Ohta,etc. DNA-Controlled Dynamic Colloidal Nanoparticle Systems for Mediating Cellular Interaction[J]. Sicence,2016,351(6275):841-845.
1701072569
1701072570
[3]Gayatri K. Joshi,etc. Highly Specific Plasmonic Biosensors for Ultrasensitive MicroRNA Detection in Plasma from Pancreatic Cancer Patients[J]. Nano Letters,2014,14(12):6955-6963.
1701072571
1701072572
[4]Seung-Kyun Kang,etc. Bioresorbable Silicon Sensors for the Brain[J]. Nature,2016,530(7588): 71–77.
1701072573
1701072574
[5]Xiaojin Zhang,etc. Cell-Free 3D Scaffold with Two-Stage Delivery of miRNA-26a to Regenerate Critical Sized Bone Defects[J]. Nature Communications,2016,7:10376.
1701072575
1701072576
[6]ColleenM.Courtney,etc. Photoexcited Quantum Dots for Killing Multidrug-resistant Bacteria[J]. Nature Materials,2016,15(5):529–534.
1701072577
1701072578
[7]TianQiu,etc. Swimming by Reciprocal Motion at Low Reynolds Number[J]. Nature Communications,2014,5(5): 5119.
1701072579
1701072580
[8]ZhongliangWang,etc. Nanoparticle-based Artificial RNA Silencing Machinery for Antiviral Therapy[J]. Proceddings of NAS,2012,109(31):12387.
1701072581
1701072582
[9]Wei Gao,etc. Artificial Micromotors in the Mouse’s Stomach[J]. ACS Nano,2015,9(1):117-123.
1701072583
1701072584
[10]Salma Kassem,etc. Pick-up,Transport and Release of a Molecular Cargo Using a Small-molecule Robotic Arm[J]. Nature Chemistry,2016,8(2):138-143.
1701072585
1701072586
[11]Clark AJ,etc. WO3/Pt Nanoparticles are NADPH Oxidase Biomimetics that Mimic Effector Cells in Vitro and in Vivo[J]. Nanotechnology,2015,27(6):065101.
1701072587
1701072588
[12]A. P. Drozdov,etc. Conventional Superconductivity at 203 K at High Pressures[J].Physics,2015,525:73-76.
1701072589
1701072590
[13]Antonis N. Andriotis,etc. Prediction of a new Graphene-like Si2BN Solid[J]. Physical Review B 93,2016,081413(R).
1701072591
1701072592
[14]SamanJahani&Zubin Jacob .Overview of Isotropic and Anisotropic All-dielectric Metamaterials[J]. Nature Nanotechnology,2016,11:23-36.
1701072593
1701072594
[15]Gem Shoute,etc. Sustained Hole Inversion Layer in a Wide-bandgap Metal-oxide Semiconductor with Enhanced Tunnel Current[J]. Nature Communications,2016,7:10632.
1701072595
1701072596
[16]Sung Hyun Jo,etc. NanoscaleMemristor Device as Synapse in Neuromorphic Systems[J]. Nano Lett.,2010,10(4):1297-1301.
1701072597
1701072598
[17]M. Prezioso,etc. Training and Operation of an Integrated Neuromorphic Network Based on Metal-oxide Memristors[J]. Nature,2015,521(7550):61-64.
1701072599
1701072600
[18]V.A.Damin,etc. Hardware elementary perceptron based on polyanilinememristive devices[J]. Organic Electronics,2015,25:16-20.
1701072601
1701072602
[19]Andrea Alu,TEDxAustinVideo.On the Quest to Invisibility: Metamaterials and Cloaking.http://www.youtube.com/watch?v=jseHPnqXlPY.
1701072603
1701072604
[20]KasturiVimalanathan,etc. Fluid dynamic lateral slicing of high tensile strength carbon nanotubes[J]. Scientific Reports,2016,6:22865.
1701072605
1701072606
[21]Joseph Kao.Rapid Fabrication of Hierarchically Structured Supramolecular NanocompositeThin Films in one Minute[J]. Nature Communications,2014,5:4053.
1701072607
1701072608
1701072609
[
上一页 ]
[ :1.70107256e+09 ]
[
下一页 ]