打字猴:1.701089263e+09
1701089263 我欣赏这两种服务,并不只是因为它们立志实现的目标,我更欣赏它们提供服务方式的创新性。它们都解决了一个长期存在的社会问题:我们如何为其作品尚未得到市场认可的艺术家提供支持?我们如何监控现实世界中社区里不断变化的需求?这两家公司提出了非常新颖的解决方法。事实上,该解决方法是如此新颖,以至于你甚至会怀疑它们根本不可能在实际应用当中发挥作用。不过在10年前,当吉米·威尔士(Jimmy Wales)推出一个让用户自己编辑内容的网络百科全书时,也曾遭遇到同样的质疑。然而目前,在通常情况下,维基百科的表现已经胜过《大英百科全书》。事实上,这些看似不靠谱的项目最后都被证实是具有实际效用的。这也就证明了网络和移动计算新技术的效用,以及普通民众的冒险精神。普通民众是实际使用和支持这些服务的人,而且在多数情况下,会帮助拓展它们的范围,这一过程被哥伦比亚大学的阿玛尔·毕海德(Amar Bhidé)教授称为“无畏的消费”(venturesome consumption)。
1701089264
1701089265 这个时代的巨大机遇就是:我们不仅拥有许多非比寻常的新工具,让我们得以设计出类似众筹网和SeeClickFix这样的产品,而且还拥有愿意“吃螃蟹”的消费者和民众,他们乐意尝试疯狂的新事物——以至于两年前大家还觉得不可思议的东西,在两年后看来已是再平常不过了。
1701089266
1701089267 因此,无论是在美国,还是在全球任何一个地方,那些将“制胜未来”的好创意,无疑也是由各种不同的成分共同“调制”而来的。我的这本《伟大创意的诞生》正是体现了这一“调制”的过程。
1701089268
1701089269 欢迎大家踏上充满灵感的创新之旅。
1701089270
1701089271
1701089272
1701089273
1701089274 伟大创意的诞生:创新自然史 [:1701089123]
1701089275
1701089276 伟大创意的诞生:创新自然史
1701089277
1701089278
1701089279
1701089280
1701089281 伟大创意的诞生:创新自然史 达尔文的悖论
1701089282
1701089283 1836年4月4日,在印度洋东部广阔的海面上,东北季风已慢慢停息。夏天的海面风平浪静。基林群岛(Keeling Islands)由两个小环礁合围而成,包括离苏门答腊岛以西970公里的27个珊瑚岛。群岛边,蓝蓝的海水平静无波,触手温润,令人沉醉;解体珊瑚上的白沙闪闪发亮,令海水增加了几分蓝意。在一处岸边,平常都会见到更大一些的海浪,而那一天,却异常平静。在热带广袤无边的蓝天下,查尔斯·达尔文(Charles Darwin)走到水边,看到了岛边围绕的活珊瑚。
1701089284
1701089285 几个小时的时间,达尔文走走停停,仔细观察着那些长势极好的珊瑚。那一年,达尔文27岁。在远离伦敦约11 300公里的这个小岛上,他站在悬崖上——双脚踩在根基位于海洋深处、而顶部几乎触及海面的海底山顶,思维徘徊在关于这座山峰如何形成的想法边缘。在他的脑海里,一个猜想即将破土而出。这个猜想可以解释这座山峰的形成原因,也将被证明是他科研生涯中第一个伟大的突破。同时,他也开始对另一个灵感进行探索,虽然它有些模糊,还没有完全成形。但这个灵感最终引领达尔文登上了19世纪知识殿堂的顶峰。
1701089286
1701089287 在达尔文的四周,珊瑚生态系统里的各种生物迅速移动,闪闪发亮。种类之多让人惊叹不已,有蝴蝶鱼、雀鲷、鹦嘴鱼、拿破仑鱼、神仙鱼;此外,还可以看见金色的小鱼群“仰仗”盛开的珊瑚花上的浮游生物为生,以及长有尖刺和触手的海胆与海葵。虽然眼前的奇景令达尔文眼花缭乱,但他的思绪却已穿过表面,去探寻更深处的秘密。4年后,达尔文出版了《乘小猎犬号环球航行》(The Voyage of the Beagle)。在书中,他写道:“热带海洋里到处是有机生物,数不胜数。对这些生物充满好奇是可以理解的。但是我个人觉得,很多自然学家在描述那些海底洞穴里的美景时,用词不实,过于渲染。”
1701089288
1701089289 从那一天开始到几周以后,达尔文并非只是沉醉于所见到的海底奇景,而是一直思考着一些问题,并试图解开那些不计其数的生物背后的秘密。在基林群岛的地面上,动植物的数量和种类并不多。就植物而言,只有少量椰子树、苔藓和杂草。他写道:“陆地上的动物,比植物还贫乏。”只能见到少量蜥蜴,很难见到真正的陆地上的鸟类。此外,就是一些随着欧洲的船只漂洋过海“移民”到当地的老鼠。达尔文对这种情况不屑地摇头说:“除了猪,再也看不到任何本土四足动物了。”
1701089290
1701089291 然而,在距离这片生物稀少的陆地几米远的珊瑚礁里,现象却千奇百怪,成千上万的生物都在蓬勃生长,其壮观程度堪比热带雨林。这真是一个谜。为什么环状珊瑚岛边的水域里可以有这么多的生物存在?从印度洋里任何一处取1万立方米的水,全面调查一下水中能找到的生物,可以发现,生物种类与达尔文笔下基林群岛上动物的情况一样,非常贫乏。倘若足够幸运,那么在取出的水中可以见到几十条鱼。然而,在达尔文观察的珊瑚礁边,上千条鱼却随处可见。根据达尔文自己的讲述,在海洋中遇到一片珊瑚礁生态系统,就像在沙漠里遇到一片葱茏的绿洲。人们把这一现象称作“达尔文的悖论”(Darwin’s Paradox)——在营养极少的水域里却生存着大量的生物,其生态位(ecological niche)的数量多得惊人。珊瑚礁仅占地球表面积的1/1 000,然而约占海洋生命种类1/4的物种都生长在珊瑚礁边。当1836年达尔文站在珊瑚礁边时,上面的这些数据他还无法取得。但在那之前,他乘坐“小猎犬号”航行了4年,所见所闻足以让他对珊瑚礁边的生物多样性产生研究兴趣,他知道这些不同寻常的现象并非偶然。
1701089292
1701089293 第二天,达尔文与“小猎犬号”的船长、海军中将詹姆斯·菲茨罗伊(James FitzRoy)一起,去勘察环状珊瑚岛的向风地带,只见冲天巨浪冲刷着珊瑚礁的白色边沿。对于见多了英吉利海峡或地中海平静海面的人,会本能地为眼前翻滚的波涛所震惊(达尔文观察到那些碎浪的力量“近似温带地区的烈风,且绝不会停止肆虐”)。但吸引达尔文注意力的并非海浪的壮观,而是抵御海浪的神秘力量——组成珊瑚礁的那些微生物。
1701089294
1701089295 大海波涛翻涌,越过宽大的珊瑚礁,力量之大似乎无可匹敌。奇怪的是,它却遇到了克星。这些克星表面上毫无抵抗力,似乎一攻即破。然而,并非是大海饶了珊瑚礁,相反是它死攻不下。巨浪冲过珊瑚,形成猛烈的碎浪,扑上沙滩,砸上高高的椰子树,树干都弯曲甚至折断了,可见海浪威力之凶猛……然而,那些其貌不扬、个头低矮的珊瑚礁却屹立不倒,久攻不败。为什么呢?因为有另一种力量参与其中,并与海浪博弈。这种神秘的力量将碳酸钙的原子与碎浪阻隔开,并把那些原子拼排成一种对称结构。尽管飓风把海浪撕扯成无数碎浪,但这种神秘的力量像建筑家一样,一直在修筑能抵抗海浪的结构,因此,珊瑚礁安然无损。
1701089296
1701089297 “小猎犬号”的此次出航是为了完成一些科学探索。那些微小的“建筑师”们吸引了达尔文的注意,他甚至认为它们就是解答那些问题的关键。在海军中将詹姆斯·菲茨罗伊批准出航的公文中记录了探索的目标,其中之一就是调查环状珊瑚岛的成因。达尔文的导师查尔斯·赖尔(Charles Lyell)是一位杰出的地质学家。他提出一种新论断,认为地壳的猛烈运动导致了海底火山的爆发,然后,珊瑚群沿着火山口周边生成了珊瑚礁。因为火山口的形状是圆的,所以形成的珊瑚岛便为圆环状。虽然导师赖尔关于地壳深处运动的理论对达尔文的影响十分深刻,但站在海滩上,看到层层碎浪撞击珊瑚时,他知道导师关于环状珊瑚岛成因的论断并不正确。达尔文认为,简单的地质运动并不能解释眼前的一切,答案应该是一种绝不屈服的生命创造力。达尔文沉思了一会儿后,脑子里闪过一些想法,那些想法似乎正在慢慢聚集,合并成一种理论,以解释那种伟大的生命创造力。一些思考和问题的答案,虽然尚未成形,却正在渐渐地变得清晰。
1701089298
1701089299 几天的考察结束后,达尔文回到“小猎犬号”上再次翻看考察日志时,他陷入了沉思,那些海浪撞击珊瑚礁的画面一直在他眼前不断地浮现。他在日志上添加了一句话:“虽然我现在并不知道确切的原因,但我认为那些珊瑚岛海岸水域里的壮观景象一定有其成因。” 这一句话将在30年后出现在达尔文的名著《物种起源》(On the Origin of Species)中。最终,达尔文找到了问题的答案。
1701089300
1701089301 超线性城市
1701089302
1701089303 瑞士科学家马克斯·克莱伯(Max Kleiber)从小就成了拷问传统和规则的小怪才。20世纪初期,克莱伯在苏黎世大学读本科,白天他在街头行走时的着装让人们大为惊叹。通常他只穿着凉鞋,衣领大开,这种装扮在正式场合是较为少见的。克莱伯在瑞士军队中服役时,无意中发现自己的长官们将情报出卖给德国军方,而瑞士官方早已公开表态在第一次世界大战中保持中立。这种情况让他非常惊恐,于是,在下一次征集令传到时,他悄悄地躲了起来。最终,他因此获刑几个月。几经辗转,当克莱伯终于在农业科学领域里一展抱负时,他早已对苏黎世社会中的种种规则与限制忍无可忍了。在之后的几十年里,无数的反传统人士和反战运动者们都效仿克莱伯的着装法,仅穿一双凉鞋就在大街上大步行走。后来,克莱伯搬到了加利福尼亚居住。
1701089304
1701089305 加利福尼亚大学戴维斯分校地处沃野千里的美国中央谷(Central Valley)中心区域。在该分校区的农业学院里,克莱伯在事业上取得了初步成就。起初,他的研究对象是牛,主要测量动物体重与其新陈代谢速度之间的关系,以及有机体燃烧能量的速度。测定新陈代谢率对养牛业有重要的意义,因为该数据能帮助牛农们合理地估算出牛群需要的食物量,同时,估算出在屠宰这些牛后,最终能产出多少牛肉。克莱伯刚到戴维斯分校不久,在研究中就发现了一条奇特的规律。为了验证这条神奇的数字规律的适用范围,克莱伯将研究对象扩展到牛以外的各种不同生物,包括老鼠、鸽子、狗,甚至是人。
1701089306
1701089307 科学家和一些热爱动物的人们很早之前就发现了这样一种情况:生物体的体积越大,它的生命进程就越慢。比如,苍蝇的生命短则数小时,长则几天,但大象却可以生存半个世纪之久。鸟类和其他体积小的哺乳动物,其心脏传输血液的速度非常快,是长颈鹿和蓝鲸的数倍。但生物体的体积与其生命长短之间的关系却并非是线性的。比如,马的体重可能是兔子的500倍,但马的脉搏速度却并非兔子的1/500。克莱伯在戴维斯实验室中做了大量的测量,最终发现在这种标度现象中,隐藏着一条不变的数学关系——克莱伯定律(Kleiber’s Law)。如果将所测得的质量数据和新陈代谢率画到对数坐标中,将得到一条由低点往高点延伸的完美的直线——从位于低端的老鼠和鸽子到位于高端的公牛和长颈鹿。
1701089308
1701089309 在物理学家们的研究中,经常会发现一些美丽的方程式。但生物学研究的现象却要复杂和混乱得多,要得出完美的数学定律是极其困难的。随着克莱伯和他的研究团队们所研究物种的数量的增加,这条定律也更加清晰:生物体的新陈代谢率与其体重的1/4次幂呈反比。算法可简单表示为:(1)先将1 000进行开平方根运算,运算结果约为31。(2)再将31进行开平方根运算,运算结果约为5.5。比如,奶牛的体重大约为土拨鼠的1 000倍,那么一般情况下,奶牛的生命比土拨鼠长5.5倍,而土拨鼠的心率却比奶牛快5.5倍。科学作家乔治·约翰逊(George Johnson)曾指出,克莱伯发现的定律中有一“可爱”之处,即不同物种之间的心跳数差异有一定的稳定性,较大体积的动物则需要更长的时间来耗尽其心跳总数。
1701089310
1701089311 在克莱伯发现这条定律后的几十年里,人们发现这一定律对细菌类微生物体和细胞的新陈代谢率也适用。人们甚至发现连植物的生长也遵循克莱伯定律。生命个体需要寻找适当的分配能量的方式,克莱伯定律就是这些生命个体发展过程中共同“遵守”的一条规律。
1701089312
[ 上一页 ]  [ :1.701089263e+09 ]  [ 下一页 ]