打字猴:1.701097811e+09
1701097811
1701097812 刘徽指出,公式(2-1)中的周、径,是“至然之数”,不是周三径一,因此需要求其“至然之数”,即圆周率,从而提出了求圆周率近似值的程序(如图2.7所示)。
1701097813
1701097814
1701097815
1701097816
1701097817
1701097818
1701097819
1701097820 他仍从直径为2尺的圆内接正六边形开始割圆,得到圆内接正12,24,48,96,192边形,援引勾股定理,计算出它们的边长以及正96边形的面积,正192边形的面积。刘徽求出差幂然后说:
1701097821
1701097822 加此幂于九十六觚之幂,得三百一十四寸六百二十五分寸之一百六十,则出于圆之表矣。故还就一百九十二觚之全幂三百一十四寸以为圆幂之定率,而弃其余分。以半径一尺除圆幂,倍所得,六尺二寸八分,即周数。……令径二尺与周六尺二寸八分相约,周得一百五十七,径得五十,则其相与之率也。周率犹为微少也。
1701097823
1701097824
1701097825
1701097826 刘徽由计算得出因此取314寸2作为圆面积的近似值。将这个近似值与半径1尺代入公式(2-1),求出圆周长的近似值6尺2寸8分。将圆的直径与周长相约,便得到圆周率十分明显,刘徽的割圆术,其主旨是证明《九章算术》的圆面积公式(2-1)。他求圆周率的方法,是以被他首先证明了的圆面积公式(2-1)为前提的。刘徽在证明公式(2-1)时用到了极限思想与无穷小分割方法,而在求圆周率时,并未用到极限思想和无穷小分割,只是极限思想在近似计算中的应用。刘徽的整个圆田术注,论点明确,论据充分,逻辑清晰,没有任何费解之处。
1701097827
1701097828 2.刘徽原理和刘徽的多面体体积理论
1701097829
1701097830 刘徽用极限思想和无穷小分割方法对刘徽原理的证明更加高明。一个长方体沿相对两棱剖开,就得到两个堑堵。将一个堑堵(如图2.8(c)所示)沿某个顶点到相对棱剖开,就得到一个阳马(如图2.8(a)所示),一个鳖腝(如图2.8(b)所示)。显然,阳马是直角四棱锥,鳖腝是四面皆为勾股形的四面体。《九章算术》给出了阳马的体积公式:
1701097831
1701097832
1701097833
1701097834
1701097835 又给出了鳖腝的体积公式:
1701097836
1701097837
1701097838
1701097839
1701097840
1701097841
1701097842
1701097843 刘徽认识到,用传统的出入相补方法无法严格证明上述两个体积公式。他只好另辟蹊径。刘徽首先提出了一个重要原理:
1701097844
1701097845 邪解堑堵,其一为阳马,一为鳖腝。阳马居二,鳖腝居一,不易之率也。
1701097846
1701097847 即在一个堑堵中,恒有
1701097848
1701097849
1701097850
1701097851
1701097852
1701097853 吴文俊把它称为刘徽原理。显然,只要证明了刘徽原理,由于堑堵的体积公式,则(2-3),(2-4)两式是不言而喻的。
1701097854
1701097855 刘徽用无穷小分割方法和极限思想证明了(2-5)式,如图2.9所示。他说:
1701097856
1701097857
1701097858
1701097859
1701097860 设为阳马为分内,鳖腝为分外。棋虽或随修短广狭,犹有此分常率知,殊形异体,亦同也者,以此而已。其使鳖腝广、袤、高各二尺,用堑堵、鳖腝之棋各二,皆用赤棋。又使阳马之广、袤、高各二尺,用立方之棋一,堑堵、阳马之棋各二,皆用黑棋。棋之赤、黑接为堑堵,广、袤、高各二尺。于是中攽其广、袤,又中分其高。令赤、黑堑堵各自适当一方,高一尺,方一尺,每二分鳖腝,则一阳马也。其余两端各积本体,合成一方焉。是为别种而方者率居三,通其体而方者率居一。虽方随棋改,而固有常然之势也。按:余数具而可知者有一、二分之别,即一、二之为率定矣。其于理也岂虚矣。若为数而穷之,置余广、袤、高之数各半之,则四分之三又可知也。半之称少,其余称细,至细曰微,微则无形,由是言之,安取余哉?
[ 上一页 ]  [ :1.701097811e+09 ]  [ 下一页 ]