打字猴:1.701106989e+09
1701106989
1701106990 总而言之,通常认为每一个定律都是简单的,直到相反的东西被证明为止。
1701106991
1701106992 我刚才说明的原因,把这种习惯强加给物理学家。但是,在每天向我们显示出更丰富、更复杂的新细节的发现面前,我们将如何证明这种习惯是正当的呢?我们进而如何使它与自然界的统一性的信念一致呢?这是因为,假如每一个事物都与其他一切事物有关,那么如此之多的不同因素参与的关系就不会是简单的。
1701106993
1701106994 倘若我们研究科学的历史,我们看到发生了两种可以说是相反的现象。有时简单性藏匿在复杂的外观下;有时简单性则是表观的,它隐蔽着极其复杂的实在。
1701106995
1701106996 有什么比行星摄动更复杂呢?有什么比牛顿定律更简单呢?正如菲涅耳所说,自然界在那里玩弄解析困难,同时又仅仅使用简单的手段,通过把这些手段结合起来,自然界就产生了我不知道的解不开的死结。藏匿的简单性正好在这里,我们必须发现它。
1701106997
1701106998 相反的例子也相当多。在气体运动论中,人们处理以极大速度运动的分子,它们的路径由于频繁的碰撞而发生变化,具有最为变幻莫测的形状,而且在每一个方向通过空间。可观察的结果则是马略特的简单定律。每一个个别的事实是复杂的。大数定律在平均中重建起简单性。在这里,简单性仅仅是表观的,只是我们感官的粗糙妨碍我们洞察复杂性。
1701106999
1701107000 许多现象都服从比例定律。但原因何在呢?因为在这些现象中,有一些东西是很小的。因此,观察到的简单定律只是普遍的解析法则——函数的无限小增量与变量的增量成比例——的结果。因为实际上我们的增量不是无限小,而是十分小,所以比例定律只是近似的,简单性只是表观的。我刚才说过适用于小运动的叠加法则,这个法则富有成效,它是光学的基础。
1701107001
1701107002 牛顿定律本身又如何呢?它的如此长久未被识破的简单性,也许只是表观的。谁知道它是否由于某种复杂的机制,由于受到不规则运动激励的难以捉摸的物质的影响呢,谁知道它是否只有通过平均作用和大数作用才变简单了呢?无论如何,不假定真实定律包含补余项是困难的,这些项在小距离的情况下是可以察觉的。假如在天文学中这些项作为牛顿定律的修正可以忽略,假如该定律因此恢复了它的简单性,那也许只是因为天体的距离极大的缘故。
1701107003
1701107004 毫无疑问,如果我们的研究方法变得越来越透彻,我们便会在复杂的东西之下发现简单的东西,然后在简单的东西之下发现复杂的东西,接着再在复杂的东西之下发现简单的东西,如此循环不已,我们不能预见最后的期限是什么。
1701107005
1701107006 我们必须停止在某个地方,要使科学是可能的,当我们找到简单性时,我们就必须停下来。这是唯一的基础,我们能够在这个基础上建立我们的概括的大厦。但是,这种简单性仅仅是表观的,该基础将足够牢固吗?这是必须研究的问题。
1701107007
1701107008 为此目的,让我们看看,关于简单性的信念在我们的概括中起什么作用。我们已在为数众多的特例中证实了简单的定律;我们拒不承认这种如此经常重复的一致只能是偶然性的结果,我们得出结论:该定律必须在普遍情况下为真。
1701107009
1701107010 开普勒注意到,第谷(Tycho)所观察的行星的位置都在一个椭圆上。他从来也没有片刻想到,由于机遇的奇怪作用,第谷每次观察天象,都是在行星的真实轨道正巧与这个椭圆相交之时。
1701107011
1701107012 不管简单性是真实的,还是它掩盖着复杂的实在,这是什么关系呢?或者它是由于降低个体差异的大数的影响,或者它是由于容许我们忽略某些项的一些量或大或小的作用,它决不是由于机遇。这种简单性不管是真实的还是表现的,总是有原因的。这样一来,我们始终能够遵循同一推理过程,如果在几个特例中观察到简单性,我们便能够合理地假定,它在类似的案例中还是真实的。否认这一点也就是赋予机遇一种不能允许的作用。
1701107013
1701107014 可是,其中仍有区别。如果简单性是实在的和基本的,那么即使我们测量手段的精度提高了,这种简单性依然如故。因此,如果我们相信自然界本质上是简单的,我们必然能从近似的简单性推论出严格的简单性。这是以前所做过的东西;这是我们不再有权利去做的东西。
1701107015
1701107016 例如,开普勒定律的简单性仅仅是表观的。这并不妨碍它们十分近似地应用于类似于太阳系的一切系统;但是,这却使它们不是严格精确的。
1701107017
1701107018 假设的作用。一切概括都是假设。因此,假设有着必不可少的作用,这永远是谁也无法辩驳的。不过,它应当总是尽可能早地、尽可能经常地受到证实。当然,如果它经不起这种检验,人们就应该毫无保留地抛弃它。这正是我们通常所做的工作,但是有时人们却有点儿病态情绪。
1701107019
1701107020 好了,甚至这种病态情绪也不是正当的。真正抛弃了他的假设之一的物理学家反而应当十分高兴;因为他找到了一个未曾料到的发现机会。我想,他的假设并不是毫无考虑地采纳的;这个假设考虑了一切似乎能够参与现象的已知因素。如果检验不支持它,那正是因为存在着某些未曾预期的、异乎寻常的东西;因为在那里存在着将要去寻找的未知的新颖的东西。
1701107021
1701107022 可是,被抛弃的假设是毫无成效的吗?远非如此,可以说,它比真实的假设贡献更大。它不仅是决定性实验(decisive experiment)的诱因,而且若不做这个假设,该实验即使碰巧做成功,也不会从中推出什么东西。人们不会看到异常的东西;人们只不过多编入了一个事实,而不能从中演绎出最小的结果。
1701107023
1701107024 现在要问,在什么条件下利用假设而毫无危险呢?
1701107025
1701107026 服从实验的坚定决心是不够的;还有危险的假设;首先,尤为重要的是不言而喻的和无意识的假设。由于我们是在不了解实验的情况下做假设的,因此我们无力抛弃这些假设。可是在这里,数学物理学再次能够帮助我们。因为数学物理学是以精确为特征的,所以它迫使我们制定一切假设,我们在没有它时也可以做假设,但却是无意识地做出的。
1701107027
1701107028 此外,我们要注意,重要的是不要过分地增加假设,只能一个接一个地做假设。如果我们在若干假设的基础上构造理论,如果实验否证它,我们前提中的哪一个必须改变呢?这将是不可能知道的。相反地,如果实验成功了,我们可以认为我们一举证明了所有假设吗?我们会相信只用一个方程就能决定几个未知数吗?
1701107029
1701107030 同样,我们务必仔细区分各类假设。其中一类假设是极其自然的,人们几乎不能避免它。人们难得不假定,十分遥远的物体的影响完全可以忽略,小移动遵循线性定律,结果是其原因的连续函数。我同样将要讲对称性给予的条件。事实上,这一切假设形成了数学物理学所有理论的公共基础。它们是最后应该被舍弃的东西。
1701107031
1701107032 还有第二类假设,我将称其为中性假设。在大多数问题中,解析家在计算之初就假定,或者物质是连续的,或者相反,物质是由原子构成的。他可以做相反的假定,而不改变他的结果。他只可能比较费神地得到这些结果;这就是一切。因此,譬如实验确认(confirmation)了他的结论,他可以认为他证明了原子的真实存在吗?
1701107033
1701107034 在光学理论中,引入了两种矢量,其一被看做速度,其二被视为涡旋。这里还是一个中性假设,因为采取正好相反的假设,也能得到同样的结论。因此,实验成功也不能证明第一个矢量实际上是速度;实验只能证明一件事,即它是矢量。这是在前提中实际引入的唯一假设。为了把我们软弱的心智所要求的具体外观给予它,那就必须或者视其为速度,或者视其为涡旋,按同样的方式,或者必须用字母x表示它,或者必须用字母y表示它。然而,不管结果如何,正像这不证明把它称为x而不称为y是对还是错一样,这也不证明把它看做速度是对还是错。
1701107035
1701107036 只要这些中性假设的特征不被误解,它们就永无危险。这些假设可能是有用的,它们或者作为计算的技巧,或者有助于我们理解具体的图像,或者如人们所说的那样坚定我们的观念。从而没有排除它们的场合。
1701107037
1701107038 第三类假设是真正的概括。它们是实验必须确认或否证的假设。不管确认或宣告不适用,它们将总是富有成效的。但是,由于我已经提出的理由,它们将只有在它们为数不太多的情况下才是富有成效的。
[ 上一页 ]  [ :1.701106989e+09 ]  [ 下一页 ]