1701333840
科学洞见第一条:实际上,所有动作都是神经纤维链之间沟通的结果。
1701333841
1701333842
基本上,人们的大脑就是一堆线路——10亿条叫做神经元的线路,由突触将每一条线路连接起来。不管什么时候,你做一件事情,大脑就发出一个信号,通过那些神经纤维链传导到你的肌肉。无论是唱个小曲,还是在高尔夫球场挥杆,甚至在阅读这个句子的时候,分管的线路就会在你脑中亮起,有点像一串串圣诞装饰灯。最简单的技能,比如网球的反手击球,也要涉及数十万计的线路。
1701333843
1701333844
基本上,每条线路都类似于图2-2。
1701333845
1701333846
1701333847
1701333848
1701333849
图2-2 反手击球的线路
1701333850
1701333851
输入部分是动作发生之前的所有事物:看到球,感觉球拍在手中的位置,做出转向决策。输出部分就是动作本身:发出肌肉运动的指令,在正确的时机、向正确的方向跨步转臀,然后动肩和手臂。
1701333852
1701333853
当你反手击球(或者弹一个A小调和弦,或走一步棋),脉冲电流就会沿着神经纤维游走,启动其他神经纤维。重点是,人类动作、思维和技能的真正控制中心就是这些线路,而不是那些盲从的肌肉。从深层次的意义上来说,线路就是动作:它精确地决定了每次肌肉收缩的强度和时间间隔,每个想法的形式和内容。懒散笨拙的线路意味着懒散笨拙的动作;相反,协调干练的线路意味着协调干练的动作。肌肉和骨骼本身的作用就如同没有牵线的木偶。
1701333854
1701333855
菲尔茨博士说:“技能都在人们脑中。”
1701333856
1701333857
脑科学实用洞见第二条:技能线路锻炼得越多,使用就越自如。
1701333858
1701333859
进化的强烈需要造就了“自动化”(我们能够在无意识中处理的事情越多,就越可能觉察到潜伏在树丛中的猛兽)。它还会创造出一种非常有说服力的幻觉:一旦掌握了一项技能,就会感到收放自如,仿佛是我们与生俱来的。
1701333860
1701333861
这两大实用洞见就是一对矛盾结合体:我们每时每刻都在锻炼纷繁复杂的线路,点亮圣诞灯饰,但同时又忘记了自己加工过这些线路。这就引出了髓鞘质。
1701333862
1701333863
说髄鞘质单调是对它的赞美。髓鞘质不光看着单调,它的无趣更是令人难以置信、叹为观止,而且死不悔改。如果把大脑的构造比做《银翼杀手》(Blade Runner)里的城市风光:神经元结构光芒四射、灯光摇曳,脉冲电流呼啸而过,那么髓鞘质的角色就好比是简陋的沥青,整齐划一,有点呆板的市政基础设施。髓鞘质由这些结构组成,一层称为磷脂膜的普通物质和一层厚厚的脂肪,像绝缘胶布那样包裹着神经纤维,以防止电流脉冲外泄。它的柱状体外形,毫无诗意,正如一位神经学家所说的“香肠状”,而且看起来确实挺像。
1701333864
1701333865
一个世纪以来,研究人员一直把重点放在神经元和突触上,而不是那似乎有点呆板的绝缘体。事实证明,研究人员是对的——神经元和突触确实可以解释几乎所有的心智现象:记忆、情绪、肌肉控制、感官知觉等等。但有一个关键问题,神经元无法给出解释:为什么人们学习复杂技能需要如此长的时间?
1701333866
1701333867
相关研究越来越多,逐渐拼出一幅新画面。髓鞘质尽管只是基础设施,却拥有功能强大的节点:在大脑这个辽阔的大都市里,髓鞘质悄无声息地把窄巷子变成了宽阔、可供飞速奔驰的超级公路。神经系统这辆客车曾经只能承受两英里的时速,有了髓鞘质之后,就能以每小时200英里的速度呼啸而去,无刺激反应时间(指两次信号之间的等待时间)下降了30倍。提高的速度和下降的无刺激反应时间结合在一起,整体信息处理能力增加了3000倍——堪称“宽带”。更可贵的是,髓鞘质能够调控速度,偶尔减慢信号传递速度,从而确保它们在最佳时刻到达突触。把握时间点至关重要。
1701333868
1701333869
菲尔茨博士说:“信号必须以合适的速度传输,在正确的时刻到达,而髓鞘质正是大脑控制传输速度的方法。”
1701333870
1701333871
比如说,老虎伍兹的高尔夫挥杆动作。传入的几股脉冲必须几乎同时到达——有点像两个小人试图一起推开一扇沉重的大门。时间间隔要求在4毫秒以内,约是蜜蜂扇动一次翅膀所需时间的一半。如果几股脉冲到达时间前后相差大于4毫秒,大门依然紧闭,那关键的第三条神经元就不会启动,高尔夫球就飞进了深草区。
1701333872
1701333873
虽然目前为止,准确的最优化理论机制仍然是个传说,但是所有的发现拼在一起,呈现出一个如此优雅的流程,达尔文都为之欢欣鼓舞:释放神经信号促进髓鞘质生长,髓鞘质控制脉冲速度,脉冲速度就是技能。
1701333874
1701333875
菲尔茨博士说:“突触的变化仍然是学习过程的关键,但髓鞘质对如何提高学习效率起着巨大的作用。”
1701333876
1701333877
髓鞘质理论令人印象深刻。但是,驻留在我脑海中的是它接下来向我们呈现的一个场景:处于精深练习中的大脑变化。我们沿着狭窄的大厅,来到一位同事的办公室,看到的景象仿佛凡尔纳(Jules Verae)笔下的海底世界:
1701333878
1701333879
在一片漆黑中,泛着绿光的鱿鱼状物质伸出触角指向细长的纤维。菲尔茨告诉我,这些鱿鱼状物质是少突胶质细胞——按实验室里的行话叫磷酸寡核苷酸,生成髄鞘质的细胞。一旦神经纤维被启动,磷酸寡核苷酸就感觉得到,牢牢地吸附住纤维并开始包裹纤维。磷酸寡核苷酸挤压自己的细胞质时,每个触角都时而卷曲,时而伸展,直到留下一层薄如蝉糞的髄鞘质。髓鞘质仍然附着在磷酸寡核苷酸上,开始一层层地包裹神经纤维,严丝合缝,巧夺天工,然后在两端旋转收缩,活脱脱一根香肠,最后沿着纤维一圈圈缩紧,就像旋紧螺帽。
1701333880
1701333881
菲尔茨博士说:“这是世界上最复杂、最精致的细胞自我分裂过程之一。这个过程非常缓慢,每一层都要绕神经纤维四五十次,需要几天甚至几周时间。想象一下,先在其中一个神经元上完成这个过程,接着是拥有成千上万条这样的神经纤维的整个神经回路。这就好像给横穿大西洋的电缆裹上绝缘体。”
1701333882
1701333883
一言以蔽之:每次进行挥杆、弹吉他和弦、下象棋开局这些技能的精深练习时,我们正在缓慢地给线路增加带宽。那些绿色小触角感知到释放的信号,遂伸向神经纤维。吸附,然后挤压,再包裹一层,加厚外皮。线路上多裹一点绝缘体,技能回路的带宽和精确性就增加一点,表现出来的就是技能和反应速度上的些微提升。犯错绝不是可有可无的——从神经学的角度来说,这是必须的:要想使技能回路达到最佳状态,必须先找到次佳位置;你必须犯错误,并关注这些错误;你得慢慢地教育自己的回路。你还必须持续开启那个回路(练习)以保持髄鞘质运作正常。毕竟,髓鞘质是活体组织。
1701333884
1701333885
髄鞘质的原则
1701333886
1701333887
1.回路放电至关重要。髓鞘质不会凭着天真的愿望,模糊的想法,或者那些洗个热水澡就忘光光的东西而生长。这种生理机制只钟情行动:真真实实的电流脉冲传过神经纤维。它钟情坚持重复。随后的几章我们将讨论这其中包含的进化原委,现在你只要记住,精深练习的动力来自原始状态,即时刻警惕、忍饥挨饿、目标明确,甚至绝望挣扎的状态。
1701333888
1701333889
2.髄鞘质包罗万象。以不变应万变。髓鞘质并不“知道”自己会被谁拿来使用,是(棒球的)游击手?还是舒伯特乐章的演奏者?无论何种用途,它的生长遵照同样的规则。髄鞘质一视同仁:哪条回路开启了,哪条回路就会包裏上绝缘体。如果你移居中国,髄鞘质将包裹那些帮助你掌握普通话的纤维。换句话说,髄鞘质不在乎你是谁,只在乎你做了什么。
[
上一页 ]
[ :1.70133384e+09 ]
[
下一页 ]