打字猴:1.701550332e+09
1701550332
1701550333 一旦一个网络被允许启动,它就能代表证据的可信程度和实践的概率,也能做出统计决策。假设一个网络的每个单位都代表一条证据显示“是男管家”(如刀子上的指纹,给受害者妻子的情书,等等),假设顶端的节点代表结论为“是男管家干的”。从概念上讲,显示可能“是男管家干的”的线索越多,我们推测“是男管家干的”的可能性就越大。从物理上讲,越多的线索单位被开启,结论单位就被激活得越多。我们可以通过将结论单位设计为以不同的方式整合输入,来在网络中执行不同的统计程序。例如,结论单位可以是一个阈限单位,就像那些开闭式逻辑门中的一样;那些单位只有在证据的权重超过一个临界值时(比如说,“排除合理怀疑”),才执行政策做出决定。或者结论单位能够逐渐地增加其活跃度;它的置信度会随着最初线索的逐渐渗入而慢慢递增,积累得越来越多,然后在收益递减的一点趋于稳定。这是神经网络建模者喜欢使用的两种模型。
1701550334
1701550335
1701550336
1701550337
1701550338 图2-5
1701550339
1701550340 我们甚至可以再大胆些,从神经元比硅芯片的连接更为方便这一事实中获得启发。为什么不把每个单位都与其他所有单位连接在一起呢?这样的网络所包含的将不只是“绿色”预测“蔬菜性”和“咬起来嘎吱响”预测“蔬菜性”这样的知识,而且还包括“绿色”预测“咬起来嘎吱响”,“咬起来嘎吱响”预测“有叶子”,“绿色”预测“缺乏移动性”,等等(见图2-6)。
1701550341
1701550342
1701550343
1701550344
1701550345 图2-6
1701550346
1701550347 随着这一变化,有趣的事情就开始发生了。网络开始产生类似于人类思维的过程,而这是连接疏松的网络做不到的。因为这个原因,心理学家和人工智能研究人员已经在使用“所有连接所有”式网络来对许多简单模式识别的例子建立模型。他们建立的网络中,同样的线条出现在不同的字母中,同样的字母出现在不同的单词中,同样的身体部分出现在不同的动物身上,同样的家具部件出现在不同的房间中。顶端的节点往往已被摒弃掉,而只计算各性质之间的相关度。这些网络,有时被称为自动协关器,它有5个典型的特征:
1701550348
1701550349 首先,自动协关器是一个重构的、内容寻址的记忆内存。在商业计算机中,比特本身是没有意义的,它们组成的字节有着任意的地址,就像街道中的房子一样,其地址与内容没有任何关系。根据地址获得内存记忆的位置,然后确定一个模式是否储藏在记忆的某个地方,需要你去那里寻找(或利用聪明的快捷方式)。而在内容寻址的内存记忆中,确定某件东西自动会照亮记忆中包含了一个那东西复制品的位置。因为在自动协关器中表征一件东西是通过开启代表其性质的单位的(在芹菜的例子中,绿色、有叶子,等等),而这些单位都彼此很紧密地连接着,所以被激活的单位会相互强化,过了几轮之后整个网络就都传遍了激活的信号,所有与这件东西相关的单位都将被锁止在“开”的位置。这表明这件东西已经被识别出了。事实上,一个自动协关器的连接电储能够支持许多组分量,不只是一个,所以它能够一次储存许多件东西。
1701550350
1701550351 更好的是,连接是冗余的,即使这东西只有一部分模式呈交到自动协关器那里,比方说仅仅是绿色和咬时的嘎吱声,模式的其余部分,“是否有叶子”也将自动完成。从某种方面说,这就是心智的回忆。我们不需在记忆中预先设定取回东西的标签,一件物体的几乎任何方面都能将整个物体带到心智中。例如,我们要回想起“蔬菜”,只要想到绿色和有叶的东西;或是绿色和咬起来嘎吱作响的东西;或是有叶的和咬起来嘎吱作响的东西。一个视觉的例子是,我们能够从一个词的几个零散部分就推测出这个词。我们不会将这些黑影看作随机的线段,或是任意序列的字母(像MIHB),而是看作一些更可能的东西(见图2-7)。
1701550352
1701550353
1701550354
1701550355
1701550356 图2-7
1701550357
1701550358 第二个卖点被称为“优雅地降解”,有助于处理嘈杂的输入或硬件失灵。当输入打印命令pritn file(打印文档)时,计算机回复为信息错误pritn:command not found(pritn:未找到命令)(print拼错为pritn),谁能忍得住不把鞋扔到电脑屏幕上?在伍迪·艾伦的《拿了钱就跑》(Take the Money and Run)中,银行抢劫犯维吉尔·斯塔科维尔由于他的书写而抢劫未遂,因为出纳员问他为什么写下他在拿着一支gub指着她。在那个装点了很多认知心理学家办公室大门的加里·拉尔森卡通片中,一个飞行员正飞临搁浅在一个沙漠孤岛上的一艘遇害难船,他读到画在沙地上的讯息,然后对着步话机大声喊:“等等!等等!……取消行动,我想它写的是‘HELF’。”在现实生活中我们干得要好得多,可能是因为我们装有自动协关器,使用了占优势的相互一致的信息来压倒一个不寻常的信息。“Pritn”会激活更为熟悉的“print”模式,“gub”会倾向于“gun”,“HELF”到“HELP”。类似地,一台计算机如果磁盘中有一个坏比特,一个插槽中有一点腐蚀,或者电源供应中滴入了一滴水,都会导致死机和系统崩溃。但一个疲惫的人、宿醉的人,或是脑受损的人并不会僵掉或崩溃;通常他或她会慢一些,也不太准确,但能够做出一个有智能的回复。
1701550359
1701550360 第三种优势是自动协关器能够做一种简约版的计算,称为限制性满意。人们解决的许多问题都有鸡和蛋的特点。第一章中的一个例子是我们根据对平面角度的猜测来计算平面的光亮度,并根据对光亮度的猜测来计算平面的角度,而二者都不能提前确定。这些问题在知觉、语言和常识推理中大量存在。我是在看一个折还是在看一个边?我听到的是元音[I](就像pin中的一样)还是有着南方口音的元音[e](就像pen中的一样)?我是一次恶意行为的受害者,还是一次愚蠢行为的牺牲者?这些模糊之处有时可以通过选择与对其他模糊事件最多数量的解释相一致的解释而解决,如果它们都能被一次解决的话。例如,如果一个发音的声可以被解释为send(传递)或sinned(犯罪的),要是我们听到一个讲话者用同样的元音嘟囔出这两个词我们就能够解决这个不确定性了。我会推断说,他一定是想说send和pen,因为send a pen(传递一支钢笔)是不违反同样约束条件下唯一可能的推测。Sinned和pin会让我说成sinned a pin(犯罪的一支别针),这违反了语法规则和可理解的含义;send和pin可以通过两个元音发音相同的约束条件而摒弃;sinned和pen能够被剔除是因为它们违背了这两个约束条件。
1701550361
1701550362 如果所有的相容性都只能一次检测一个,这种推理需要花很长时间。但在一个自动协关器中,它们都被提前编码在连接中,网络能够一次性评估所有的相容性。假设每个解释都是一个模型神经元,一个对sinned,一个对send,等等。假设那对解释一致的单位被连接到正电荷,那对解释不一致的被连接到负电荷。激活将会围绕着网络飞掠,如果一切运转正常,它会确定在一个状态,在这种状态中有最大数量相互一致的解释被激活。用一个恰当的比喻:就像是一个肥皂泡在鸡蛋形和变形虫形状之间摇摆不定,被周边邻近的分子拖拽着进到一块区域。
1701550363
1701550364 有时,一个约束网络可以有相互不一致但相等的稳定状态。这说明了这个现象整体的模糊性,即以两种方式来解释整个物体,而不是其各个部分。如果你盯着看图2-8时(称作耐克尔立方),你的知觉会在顶面的俯视感和底面的仰视感之间不停转换。当整体转换发生的时候,对各个局部的解释也被拖着进行转换。每个近边成为远边,每个凸角成为凹角,等等。反之亦然,如果你试着将一个凸角看作凹的,你有时能够促使将对整个立方体的感觉翻转过来。这种动态可以用一个网络来表示(见图2-8下),图中单位代表着局部的解释,三维物体中一致的彼此相互激活,不一致的相互抑制。
1701550365
1701550366 第四种优点来自网络自动归纳概括的能力。如果将字母监测器(将一堆输入单位汇集到决策单位)连接到字母打印器(有一个意图单位散开到一堆输出单位中),我们就制造了一个简单的读写或查询“小幽灵(后台程序)”——例如,一个打印出C来回应输入B的机器。但如果你略过中间人,直接将输入单位连接到输出单位,有趣的事情就发生了。你得到的不是一个忠诚的逐个到字母的查询“小幽灵(后台程序)”,而是一个能够做一些查询归纳的机器(见图2-9)。这种网络被称为一个模式协关器(pattem associator)。
1701550367
1701550368
1701550369
1701550370
1701550371 图2-8
1701550372
1701550373 假设底端的输入单位代表动物的外表:“长毛发的”、“四足的”、“长羽毛的”、“绿的”、“长脖子的”,等等。有了足够的单位,就能通过开启每个动物独特的那组特征的单位来代表它们。开启“长羽毛的”单位,关闭“长毛发的”单位等,就代表了鹦鹉。现在假设顶端的输出单位代表动物学事实,一个代表动物食草,另一个代表动物是温血的,等等。没有单位代表某个特定的动物(也就是说,没有“鹦鹉”单位),但权重自动地代表了动物类别在统计上的知识。它们隐含了这样的知识:长羽毛的动物倾向于是温血的,长毛发的倾向于是年轻的,等等。任何储存在对一个动物的连接中的事实(鹦鹉是温血的)自动地转移到类似的动物(虎皮鹦鹉是温血的),因为网络根本不在乎连接从属于任何一个动物。网络只是说哪些可见的特征可以推测出哪些可见的特征,而略去了关于动物种类共同的表像(见图2-9)。
1701550374
1701550375
1701550376
1701550377
1701550378 图2-9
1701550379
1701550380 从概念上讲,模式协关器的原理就是,如果两个物体在某些方式上相似,那么它们很可能在其他方式上也相似。从物理上讲,相似的物体是由一些完全相同的单位所表征的,所以任何与一个单位的物体相连接的信息事实上就会与其他物体的许多单位相连接。此外,不同程度的包容级别被添加到相同的网络中,因为任何几个单位的小集合都隐含地界定了一个级别。单位越少,级别越大。比如说有对于“移动”“呼吸”“长毛发”“吠叫”“咬”和“见到消防栓就抬腿”这样的输入单位,发散出所有这六项的连接就触发有关狗的事实。发散出前三项的连接触发了关于哺乳动物的事实。发散出前两项的触发了关于动物的事实。只要有合适的权重,为一个动物设定的知识能够既与他的直接家庭成员也与他的远亲成员共通使用。
1701550381
[ 上一页 ]  [ :1.701550332e+09 ]  [ 下一页 ]