打字猴:1.701551271e+09
1701551271 现在我们谈到了一种简单的“电眼”错觉——墙纸自动立体视图。一些书和贺卡中的立体视图显示了多列重复的东西——树、云、山和人。当你看这些立体视图时,感到每一层物体在漂进漂出着,都有着自己的深度(尽管在这些自动立体视图中,并没有出现新的形状,我们稍后会谈到那些七拐八扭的立体图。)这有个例子(见图4-8),是伊拉维涅尔·萨比亚(Ilavenil Subbiah)设计的。
1701551272
1701551273
1701551274
1701551275
1701551276 图4-8
1701551277
1701551278 图4-8有些像布鲁斯特的墙纸,但它刻意有一些不均等的分隔,这并不是出于裱糊工人的草率之举。图片中包括了7艘紧密排列的小船,但只有5座间距疏松一些的桥拱,当你向图片后方看时,小船似乎比桥拱离得更近,因为它们错误交汇的视线聚到了一架更近的飞机上。
1701551279
1701551280 如果你还不知道如何融汇看到立体视图,请把这本书举到你眼睛的正前方。使书的距离近得目光无法聚焦,令你的眼睛直视前方,看到重影。然后慢慢将书离远些,同时保持眼睛放松,“穿透”书看到书后面想象的一点。有些人将一片玻璃或一张幻灯片放在立体视图顶部,这样他们就能聚焦到远处物体的反射光了。你应该还能看到重影。这个手法是让重影中一个图像漂到另一个的顶端,然后就像磁石一样,将它们保持在那里。试着校准图像。叠在一起的轮廓应当逐渐聚焦,然后弹进弹出不同的深度。正如泰勒所说,立体视觉就像爱情:如果你不能确定,你就还没有体验到。
1701551281
1701551282 有些运气不错的人能做到这点,他们把一根手指放在立体视图前面几厘米处,聚焦于这根手指,然后慢慢移开它,同时目光仍保持那个深度。用这种技巧,目光交叉带来的错误融汇使得左眼看到右边的一只船,而右眼看到左边的一只船。别担心你妈妈说的话;你的眼睛不会永远僵死在那个位置的。你能否对眼看到融汇的立体视图还是对眼程度不够,这依赖于你是否能将目光略微交叉或盯着墙斜视。
1701551283
1701551284 通过练习,大多数人都可以目光融汇看到墙纸立体视图。他们不需要像心理学家目光自由融汇来看二图立体视图那样,做瑜伽般的精神高度集中,因为他们不需要将他们的聚焦投影从汇聚投影中以同等程度分离出来。看到自由融汇的二图立体视图需要双眼目光分开,各自保持直视其中一幅图片。而看到融汇的墙纸立体视图则只需要双眼目光分开,保持直视同一幅图中的邻近相同物体。相同物体之间的距离非常接近,会聚角只在聚焦投影想要的地方那条线之外的不远处。在两个投影之间的网络中通过小小的摆动,聚焦于比你目光会聚处稍近一点的地方,这对你来说应该并不太难。如果确实难的话,艾伦·德詹尼丝可能会把你拉到她的辅助小组中。
1701551285
1701551286 墙纸立体视图背后的手法——相同图画吸引目光产生了错误的视觉配对——揭示了大脑要看到立体图所必须解决的一个基本问题。在大脑能够测量双目视网膜上某一点的位置之前,它需要确定一只视网膜上的一点与另一只视网膜上的那点都是来自现实世界的同一个标志。如果现实世界只有这一个标志,那就容易了。但如果有两个标志,视网膜的图像就可能以两种方式匹配(见图4-9):左眼中的1点在右眼中也是1点,左眼中的2点在右眼中也是2点——这是正确的匹配;或者,左眼中的1点在右眼中是2点,左眼中的2点在右眼中是1点——这种错误的匹配会导致两个虚拟标志的幻觉。
1701551287
1701551288
1701551289
1701551290
1701551291 图4-9
1701551292
1701551293 如果增加更多的标志,匹配错误就会增倍。有3个标志,就有6个错误匹配;10个标志,90个;100个标志,几乎10000个错误匹配。早在16世纪,天文学家约翰内斯·开普勒(Johannes Kepler)就注意到了这个“匹配问题”,他思考了凝望星空的眼睛如何与数以千计的白点相匹配的问题,以及一个物体在空间中的位置如何能够根据它的多重映像而被确定的问题。墙纸立体视图的效果是依靠诱骗大脑接受一个貌似正确但实际错误的方法来解决匹配问题的。
1701551294
1701551295 直到最近,每个人都认为大脑解决了日常生活中匹配的问题。大脑首先通过识别出每只眼睛中的物体,然后将相同物体的影像利用匹配的方式加以匹配。左眼中的柠檬与右眼中的柠檬匹配,左眼中的樱桃与右眼中的樱桃相匹配。在智能的指导下,立体视觉可以只把来自同种物体的点连在一起,从而避免错误匹配。一个典型的情景或许包含几百万个点,但包含的柠檬却少得多,也许只有一个。所以如果大脑对整个物体匹配的话,出错的机会就会变少。
1701551296
1701551297 但自然并没有选择这种解决方法。第一个线索来自阿米斯的另一个古怪屋子。这一次,不知疲倦的阿米斯建了一座普通的长方形房间,但在每厘米地板、墙壁和天花板上都粘贴了树叶。用一只眼睛通过窥视孔来看这间屋子时,就好像是模糊的绿色海洋。但当用双眼来看时,它又恢复成正确的三维形状了。阿米斯构建了一个只能用神奇的中央独视眼来看而不能单用左眼或右眼看的世界。但如果大脑必须依赖于识别出每只眼中的物体并将之联系起来,它又如何将两只眼睛看到的情形匹配起来呢?左眼看到的是“叶子叶子叶子叶子叶子叶子叶子叶子”,右眼看到的也是“叶子叶子叶子叶子叶子叶子叶子叶子”。大脑面临着能想象到的最困难的匹配问题。尽管如此,它还是轻松地将双眼看到的物体匹配在一起,显现出中央独视眼的视觉。
1701551298
1701551299 这个例子并非无懈可击。如果房间的边和角没有被叶子盖好怎么办?也许,每只眼睛都对房屋的形状有一个大概的认识,当大脑将两幅图像融汇在一起时,它就更加确信这种认识是准确的了。大脑无须识别物体即可解决匹配问题的证据来自心理学家贝拉·朱利斯(Bela Julesz)早些时候巧妙运用的计算机图像。在1956年逃离匈牙利来到美国之前,朱利斯是一名对空中侦察感兴趣的雷达工程师。空中侦察采用了一种巧妙的手法:立体视觉穿透伪装。伪装的物体表面覆盖着一些与周围背景环境相一致的标志物,使物体与背景的边界不那么明显。但只要物体不像烙饼那么平,当从两个观察点看时,双眼看到的标志物就会呈现出略微不同的位置,而背景标志则不会怎么移动,因为它们离得更远。空中侦察的手法是拍摄陆地的照片,然后让飞机飞一小会儿,再拍张照片。将两张照片并排放在一起,然后将它们输入一个对这两张照片的差异超级敏感的探测器:一个人。人实际上是在用一个立体图观看器来看图片的,就好像他是一个巨人,将他的两只眼睛放在当初飞机照相机上的两个位置一样,于是伪装的物体就在深度上呈现出来了。因为根据定义,一个伪装的物体用单眼几乎是看不到的,我们有另外一个例子来说明神奇中央独视眼能够看到任何一只真眼都看不到的东西。
1701551300
1701551301 证据要来自完美的伪装,这一次朱利斯使用了计算机。对于左眼的视觉,他在计算机上做了一个正方形,上面盖着随意分布的点,就像电视机的雪花点一样(见图4-10)。然后朱利斯让计算机又为右眼做了一个完全相同的正方形,只有一处做了调整的正方形:他将一小片点略微向左挪了一些,将新的一条随意分布的点插入了右边的缝隙,这样移走的点就伪装得非常好了。每张图片自己都像散乱的胡椒籽一样。但当用立体视图观看时,那一片就跃然浮现出来。
1701551302
1701551303
1701551304
1701551305
1701551306 图4-10
1701551307
1701551308 许多当时的立体视图权威拒绝相信这一点,因为大脑要解决的匹配问题太难了。他们怀疑,朱利斯是不是在一幅图背后划下了小标记。不过计算机当然没有作弊。任何看了随机散点立体视图的人都会立刻信服朱利斯的实验。
1701551309
1701551310 与朱利斯偶尔会合作的克里斯托弗·泰勒,发明神奇眼立体视图所用的只是将墙纸自动立体视图与随机散点立体视图组合起来而已。计算机得出了垂直的一条散点,然后把复制后的小条并排放在一起,这样就制作了随机散点墙纸。假设每一条有十个点那么宽,我们将点从1数到10……用“0”代表10就如图4-11所示。
1701551311
1701551312
1701551313
1701551314
1701551315 图4-11
1701551316
1701551317 任何一簇点——比如说,“5678”——每隔10个空格就重复一次。当目光凝视到邻近条的时候,这些长条图便会在我们的视线里结合起来,就像我们在墙纸立体视图里体验到的一样,只不过我们的大脑是把两片点图而不是把两个花朵图案重叠在一起罢了。那些相距较近的重复图案会带给我们较其他的立体影像更为接近的幻象,这是因为两眼放在其上的视线会在距离我们更近的地方相交的缘故。要在电眼立体视图里让某一片图案浮在其他幻象之前,设计者就必须先决定好该片区域的范围,再让其内的每一圈黑点都能与距离它最近的相同黑点靠得更近。在图4-12中我想做一个漂浮的长方形。所以我从两个箭头之间的长条中剪出两个点4;你能找到被剪的那几排,因为它们要比其他排短两个空格。在长方形中,每一簇点,比如“5678”,都每隔9个而不是10个空格就重复一次。大脑把彼此更加邻近的复制点簇解释为来自更为接近的物体,这样长方体就漂浮起来了。顺便提一句,图4-12不仅展示了自动立体视图是如何制作的,而且它本身就产生了一个自动立体视图效果。如果你把它像墙纸一样看得融汇在一起,一个长方形就会浮现出来。顶部的星形是为了帮助你得到立体幻象而准备的;让你的目光飘移直到看见重影有4个星形,然后慢慢地将图像聚在一起,直到中间两个星形融汇在一起,这样你就看到了一排3个星形而不是4个星形。小心地看图4-12,同时目光不做重新调整,你就可以看到飘浮的长方形。
1701551318
1701551319
1701551320
[ 上一页 ]  [ :1.701551271e+09 ]  [ 下一页 ]