1701551390
1701551391
立体视觉是辨别平面深度和材质的视力发育关键早期的一部分,但并不是唯一的部分。看到三维并不需要两只眼睛。你可以从一幅图片的最简单线索中获得对形状和材质的丰富感觉。下面我们来看看这些由心理学家爱德华·埃德尔森(Edward Adelson)设计的图案(见图4-15)。
1701551392
1701551393
1701551394
1701551395
1701551396
图4-15
1701551397
1701551398
图4-15左边这个图案看上去是有竖直灰条的白纸板,水平折叠,光从上面照下来。右边那个看上去是有水平灰条的白纸板,竖直折叠,光从侧面照过来。如果你盯的时间足够长,两幅图都会在深度上翻转,像内克尔立方体一样;我们先忽略这点。但两幅图中的用墨(以及在你的视网膜上的映像)实际上却是相同的。每幅都是一个锯齿形井字方格,其中一些方格中有阴影。在两幅图中,各角的方格都是白色的,顶端和侧面的方格是浅灰色的,中间的方格是深灰色的。阴影和锯齿的组合不知为何形成了第三维空间,而且给每个方格着了色,只是以不同的方式而已。标注“1”的边界实际上在两幅图中都一样。但在左图中,这条线看起来就像是一条区分了不同色彩的分界线——也就是介于白色条纹和灰色条纹之间的边界;而在右图中,这条线看起来则像是由形状和阴影所造成的分界线——也就是一条白色条纹落入褶纹另一条阴影中所造成的边界线。以数字“2”标注的两条边界线其实也是相同的边界,只是我们对它们进行诠释的方式刚好与上述相反:那就是左图当中的边线是阴影和褶纹造成的边线,而右图当中的边线则是由不同色彩的条纹所造成的边线。所有这些差异,都是由两个图当中以不同方向扭曲的方块所制造出来的!
1701551399
1701551400
要想了解小小图片中的万千乾坤,你需要解释区分图片与现实世界的3条定律。每条定律都需要一位心智“专家”来进行解释。像立体视觉一样,这些专家的工作是为了让我们精确地掌握现实世界的平面,但它们是依靠不同信息来运行的、它们对世界做出不同的假设,解决不同的问题。
1701551401
1701551402
第一个问题是视角问题:一个三维的物体如何在视网膜上被投映为二维的形状。不幸的是,任何投映都可能来自无限多个物体,所以没办法只从一个映像来恢复其形状(正如阿米斯提醒他的观察者那样)。“所以说,”演化似乎断言了,“没有什么是十全十美的。”我们的形状分析器在碰运气,在给定视网膜图像的情况下,令我们看到最有可能的世界的状态。
1701551403
1701551404
一个视觉系统怎么能根据视网膜的映像来计算出世界最有可能的状态呢?概率理论提供了一个简单的答案:贝叶斯定理(Bayes’theorem)也就是一种能由搜集到的证据进而计算出特定假设为真的概率的方法。贝叶斯定理说,一个假设优先于另一个假设的概率可以只需通过针对每个假设的两个数字而求得。一个是先验概率:在看到证据前,你对该假设的确信程度。另一个是可能性:如果该假设为真,你现在所看到的证据会出现的概率是多少。将假设1的先验概率与假设1证据的可能性相乘,将假设2的先验概率与假设2证据的可能性相乘,算得两个数的比率。现在你就得到了优先第一假设的概率了。
1701551405
1701551406
我们的三维线性分析器又是如何使用贝叶斯定理的呢?要找出某一线段究竟是由哪一物件所产生的,它会先假设特定物件是真的出现在该场景里,再找出最有可能产生所见线段的物体——也就是计算出每个物件产生证据的可能性;此外该物件还得在一般的状况下最有可能出现才行——也就是事前概率够大。正如爱因斯坦曾这样谈论上帝一样,我们的三维线性分析器推测,这个世界是难以捉摸的,但它没有恶意。
1701551407
1701551408
因此,形状分析器一定具备了一些有关映像的概率信息(从各个角度物体如何显现)和一些有关世界的概率信息(这个世界有着什么样的物体)。一些关于映像的概率确实是非常好的。从理论上讲,一分硬币能够投映为很细的一条线,但只有从它边上看的时候才会这样。如果实景中有一分钱,你从边上看它的概率有多少呢?除非有人专门安排你和硬币,否则概率不会太高。绝大多数视角会使这枚硬币投映出一个椭圆形。形状分析系统假设目前双眼所见的只是一个一般的场景——不是与阿米斯所呈现出的风格一样,会将物件精确安排以便让它们呈现出特别样式的场景——并依此来估测各种假设为真的概率。另一方面,一根火柴几乎总是会投映出一条直线,所以如果图像中有一条线,而其他条件相同的话,猜它是一根火柴比猜它是盘子要有把握得多。
1701551409
1701551410
一幅图像中的一堆线可以进一步缩小概率,例如,一组平行或近乎平行的线不可能是巧合。世界上的非平行线几乎不会在图像上投映出接近平行的线来:绝大多数散落在地板上的棍条会彼此交叉,角度或大或小。但世界上平行的线,比如电线杆,几乎总是投映出近似平行的线。所以如果一个图像中有接近平行的线条,那么它们反映世界中平行边棱的可能性就比较大。还有许多其他的经验法则告诉我们,真实世界里的哪些形状会投射出特定的影像标记。小T、Y、角、箭头、鱼尾纹状、平行弯曲线是各种直边、角、直角和对称形状的印记。漫画家几千年来一直在运用这些法则。一个机灵的形状分析器可以运用反向思维,来推测它们在真实世界中是什么。
1701551411
1701551412
不过当然进行反向可能性逆推是缺乏依据的——比方说平行的东西通常投映出近似平行的图像,所以近似平行的图像就暗示是平行的东西。就好像你听到窗外有马蹄声,就断言它们来自一匹斑马,因为斑马常常发出马蹄声。认为世界包含有某个实体的先验概率——有多少匹斑马,有多少个平行的条棱——必须考虑进来。要想使一个玩赔率的形状分析器得以运行,这个世界最好包括许多直的、规则的、对称的、紧密的之类的物体,这样才好猜。真的是这样吗?一个浪漫主义者或许会认为,自然世界是有机的和柔性的,它的硬性边缘是被美国陆军工程兵用推土机推出来的。正如一位教文学的教授在他的课堂上说:“风景中的直线是人为设置的。”一个心存怀疑的学生盖尔·詹森·桑福德(Gail Jensen Sanford)出版了一组自然中的直线,最近被《哈泼氏》杂志转载:
1701551413
1701551414
在即将碎裂的波浪上缘的线条;草原的遥远边界;暴雨瓢泼、冰雹肆虐、白雪覆盖的原野中的小径;晶体的模式;花岗石表面中的白石英线;冰柱、钟乳石、石笋;平静的湖面;斑马和老虎的标志;鸭子嘴;鹬的腿;候鸟群的角度;猛禽的俯冲;一种蕨类植物的新叶子;仙人掌的刺;生长迅速的小树树干;松针;蜘蛛织的丝束;冰表面的裂纹;变质岩的层;火山的侧面;风吹的高积云云束;半个月亮的边缘。
1701551415
1701551416
这当中有一些有争议,另一些对一个形状猜测器来说弊大于利。湖的水平面或草原的地平线,还有半个月亮的边缘不是来自世界固有的线条。但这个论点是正确的。世界的许多法则给了心智很好的、可分析的形状。运动、张力和重力造就了直线。重力造就了直角。内聚力造就了光滑的轮廓。那些能够移动的生命形式通常都会演化出对称的模样。自然选择将它们的身体部件塑造为工具,来复制人类工程师对制造精良部件的要求。大平面收集模式时以大致相同的大小、形状和间距:裂纹、树叶、细砾、沙子、涟漪、针。这些世界上似乎是由能工巧匠雕凿出来的部分不仅是形状分析器最能够恢复的部分,而且也是最值得恢复的部分。它们是那些充斥和塑造周围环境的强大力量的提示符,比那些成堆的碎石屑更值得关注。
1701551417
1701551418
即使是最好的线条分析器,其装备也只适合于一个卡通世界。平面并不只是由线条圈起来的,它们是由材料组成的。我们对光和色彩的感觉是一种鉴定材料的方式。我们不会去咬一个塑料苹果,因为色泽已经提示我们,它不是由新鲜果肉组成的。
1701551419
1701551420
根据反射光来分析物质是光反射分析师的工作。不同种类的物质反射回不同波长、不同数量的光。为了简明些,我会只介绍黑白两色;彩色大致上是同样的问题再乘3即可。不幸的是,给定数量的反射光可能来自无限多种物质和光照方式的组合。100个单位的光可能来自煤块反射的1000支蜡烛10%的光,也可能来自雪堆反射的111根蜡烛的90%的光,因此没有简单的方法来根据物体反射光来推导物体的材质。光分析器一定设法解析出了照明度的因素。这又是一个不确定问题,完全等价于:我给你一个数,你告诉我哪两个数相乘可以得到它。要想解决这个问题,只能增加新的假设条件。
1701551421
1701551422
照相机面临着同样的问题——无论雪球是在室内还是室外,如何将它表现为白色。照相机控制胶片曝光程度的仪表包含了两个假设。第一个假设是光照的一致性:在阳光下、树荫中或灯泡下均是一致的。当这个假设被违背后,拍快照者会很失望。站在蔚蓝天空下的阿姨,拍摄出来的效果很可能会像一团漆黑的剪影,因为照相机被它所见到的场景迷惑了:它见到的是整个被阴影给笼罩住的阿姨的脸,以及被阳光照射得明亮无比的蓝天。第二个假设是景物一般来说是中度灰色的。如果你随意拼凑一堆物体,它们的多种颜色和光亮度通常会平均化为一种中度的灰色阴影,它会反射18%的光。照相机“估计”它在看一个一般的景物,就曝了刚刚足够量的光,使得景物中光亮度范围的中值呈现为胶片中的中度灰。比中间范围淡的小色块表现为浅灰和白;较深的小色块,表现为深灰和黑。但当假设错误,景物事实上并没有平均表现为灰色时,照相机就被欺骗了。黑色丝绒上的黑猫照片呈现为中度灰,雪地上的北极熊呈现为中度灰等。熟练的摄影师会分析一个景物如何与一般景物不同,并使用各种技巧来进行弥补。一个原始但有效的方式是,带一张标准的中度灰色卡(它能准确地反射18%的光),将它挨近物体,将对光仪表对准这张卡片。照相机对真实世界的假设就这样得到了满足,它对于周围照明度水平的估计(从卡片反射的光再除以18%即可得到)也确定会是正确的。
1701551423
1701551424
埃德温·兰德(Edwin Land)是偏光过滤器和宝丽莱·兰德易拍得相机的发明人,他也遭到了这个问题的挑战,这个问题在彩色摄影中格外令人头疼。灯泡的光是橘黄色的;荧光灯的光是橄榄色的;太阳光是黄色的;天空的光是蓝色的。我们的大脑设法解析出了照明色彩的因子,就像它解析出照明强度因子一样,在所有这些光下,都能正确地辨别物体的颜色。而照相机不行。除非它们发出自己闪光灯的白光,否则它们在表现室内景物时呈现一种厚重、似乎生锈的色调,表现有阴影的景物时像呈现浆状蓝色等。一个见多识广的摄影师会购买特殊的胶卷或是在镜头上加一个滤光镜做光补偿,优秀的实验室技术人员能够在冲印照片时修正颜色,但易拍得相机显然做不到这点。因此兰德产生一个基于实际应用的需要,就是如何去掉照明的强度和色彩,我们称之为色彩恒常性问题。
1701551425
1701551426
不过兰德还是一个自学成才的、卓越的知觉科学家,他对大脑是如何解决这个问题心怀好奇。他建立了一个色彩知觉实验室并提出了一个充满智慧的色彩恒常性理论。他的观点被称为视网膜层次理论,为知觉者提出了几个假设。第一个假设是地球的照明系统是波长的丰富混合。这一法则的例外情况是钠汽灯,即停车场里设置的节能灯。它发出很窄的波长范围,我们的知觉系统无法解析出因子来,因此汽车和脸都被染上了一抹令人感觉阴森森的黄色。第二个假设是视域中亮度和色彩的逐渐变化很可能源自于景物被照亮的方式,而猝然变换则很可能是由于到了边界,即一个物体的终结和另一个物体的开始。为了让事情变得简单些,兰德对人们和他的模型在由二维矩形块组成的人造世界中进行了测试,他称那个世界为蒙德里安,以纪念荷兰著名画家。在一个光从侧面照过来的蒙德里安世界里,一边的一块黄色小块反射的光会与另一边一个相同黄色小块反射的光很不相同。但人们把它们都看作是黄色的,而视网膜层次模型去除了边到边之间光的梯度,所以也同样把它们看作是黄色的。
1701551427
1701551428
视网膜层次理论是个很好的开端,不过实践证明,它过于简单了。一个问题是将世界设定为一个蒙德里安式的大平面的这个假设本身。回到图4-15中埃德尔森的图画,那就是锯齿形的蒙德里安平面。视网膜层次模型会处理所有鲜明边界之类的东西,将左图中边缘1阐释为类似右图中的边缘1。但对你来说,左边的看上去像不同颜色的两条之间的分界,右边的则像同一根条被折叠,而一部分在阴影中。这种差异出于你对三维形状的解释。你的形状分析器将蒙德里安平面弯成了分隔房间的屏风,但视网膜层次模型还是把它们看作同样的旧棋盘。很显然,它缺失了什么东西。
1701551429
1701551430
缺失的东西就是阴影部分倾斜的效果,也就是将某一个实际场景变成一个影像的第三条法则。正对光源的平面会反射回许多光,因为光正照在平面上就弹了回去。与光源角度几乎平行的平面反射的光要少得多,因为绝大多数光擦过平面继续它的轨迹。如果你的位置离光源比较近,当平面正对你时,你的眼睛能捕捉到更多的光(相比于平面几乎在你的侧面时)。你会看到用手电筒直照一张灰纸片与侧着照这张纸片之间的差异。
1701551431
1701551432
我们的阴影分析器又是如何反向运用这条法则,根据平面反射光的数量来计算平面的倾斜度的呢?结果绝不仅仅是估算平板的倾斜度。许多物体,如立方体和宝石都是由倾斜平面组成的,所以恢复其斜度是一种确定其形状的方式。事实上,任何形状都可以被认为是由数百万个小平面组成的雕刻物。即使当平面是光滑弯曲的,可以理解为每个“小面”都缩成了点,阴影法则同样适用于离开每个点的光。如果这条定律可以被反向运用,我们的阴影分析器就可以通过记录每点切面的倾斜度,而理解平面的形状了。
1701551433
1701551434
不幸的是,一小块反射的给定数量的光可能来自正对光的深暗平面,也可能来自光源角度很小的明亮平面。所以,如果不做额外的假设,是没有简便方法来恢复光从平面反射的角度的。
1701551435
1701551436
第一个假设是平面的光亮度是一致的:假设世界是由石膏做的。当平面颜料涂抹不均匀时,这条假设就违背了,我们的阴影分析器也就被愚弄了。情况就是如此。绘画和摄影照片是最明显的例子。一个不太典型的例子是动物伪装中的反隐蔽。许多动物兽皮的光亮度从背部到肚皮是逐渐变化的,这样就抵消了光照在它们身上产生三维立体形状上的效果。这使得动物看起来变得扁平化,令捕食者脑中做出假设、根据阴影分析形状的设备更加难以检测到目标物。化妆也是一个例子。稍谙化妆之道,涂抹皮肤的化妆品就会令观察者感觉看到形神俱佳的理想形状。鼻子两侧的深红色使它看上去似乎与光呈现更浅的角度,这令鼻子看起来显得更窄。上嘴唇上的白粉底起到相反的作用:嘴唇看起来更加丰满,像是以更好看的撅嘴形状阻截了迎面而来的光。
1701551437
1701551438
这些必须从光影现象来推断物体形状的分析系统,还必须对世界做出其他的假设才行。世界上的平面由数千种材料组成,光以非常不同的方式从它们倾斜的平面弹回来。褪光平面像粉笔或无光纸一样遵循简单的法则,大脑的阴影分析器往往推测世界就是褪了光的。而有古木光泽的、毛绒的、有凹陷的以及有刺条的表面则随着光产生其他更奇怪的效果,它们能够愚弄眼睛。
1701551439
[
上一页 ]
[ :1.70155139e+09 ]
[
下一页 ]