1701551632
图4-27
1701551633
1701551634
图4-27顶端右边的图形在看上去像一个正方形和看上去像一个菱形之间跳转,这依赖于你在心理上是将它与左边3个图形归为一组,还是与下面8个图形归为一组。与图形排列相校准的想象直线成为笛卡儿参考框架——一个框架与视网膜上-下框架校准,另一个呈对角线倾斜——一个图形的心理描述是在一个框架中还是在另一个框架中,会导致它看起来有所不同。
1701551635
1701551636
如果你仍然对所有这些覆盖整个视域的、无色无味的参考框架心存怀疑,我给你一个心理学家弗雷德·阿滕尼夫(Fred Attneave)做过的巧妙和简单的展示。图4-28中左边的三角形怎么了?
1701551637
1701551638
1701551639
1701551640
1701551641
图4-28
1701551642
1701551643
如果你盯它们的时间足够长,它们会从一种样子迅速转变成另一种样子。它们没有移动,也没有在深度上翻转,但有些东西变了。人们将这种变化称之为“它们指向哪个方向”。跃上纸面的不是三角形本身,而是覆盖这些三角形的一个心理参考框架。这个框架不是来自视网膜、头、身体、房间、书页或重力,而是来自这些三角形的一个对称轴。这些三角形有3个这样的对称轴,它们依次发挥主导作用。每条轴都有一个等价于南北极的东西,它赋予了人们对三角形指向的感觉。这些三角形一同跳转,好像是在一个合唱团里一样;大脑希望它的参考框架会包含整个周边的图形。图4-28右边的三角形变化更为急剧,它们在6种印象之间急速变换。它们可以被解释为平躺在书面上的钝角三角形,或是在深度上直立的直角三角形,每种情况都有一个参考框架,它可以用3种形式来放置。
1701551644
1701551646
形状是识别物体的重要线索
1701551647
1701551648
物体将参考框架引向自己的能力有助于解决视觉中的一个重大问题,也就是我们由基本的视网膜成像向上探索到抽象思考的过程里,必须面对的下一个问题——人们如何识别形状。一个普通成年人知道大约一万个物品的名字,其中绝大多数是凭借形状来区分的。甚至一个6岁的小孩也能叫出几千个物品的名字,学习效率为每几个小时就学会一个(从0~6岁)。当然,物体可以用许多线索来识别。有些可以用声音和味道来识别。而另一些,比如篮子里的衬衫,则只能根据它们的颜色和质地来识别。但大多数物体能够根据它们的形状来识别。我们在识别物体形状时,我们就像是一个纯粹的几何学家,研究空间中物质的分布并找到记忆中最接近的匹配。心理几何学家一定足够精明,因为一个3岁的孩子就能够仔细检查一盒动物饼干或是一堆鲜艳的塑料片,并根据它们的外形轮廓滔滔不绝地念叨出这些奇异动物的名称。
1701551649
1701551650
图1-6说明了为什么这是一个难度很高的问题。当物体或观看者移动时,二维半草图中的轮廓就变化了。如果你对形状的记忆——比如说箱子——是你最初看时的那个二维半草图的拷贝,那么移动后的版本就不再匹配了。你对箱子的记忆是“一个长方形的厚板和一个处于12点钟方向的水平把手”,但你现在看的把手不是水平的,也不在12点钟方向。你会目光茫然,不知道它是什么(见图4-29)。
1701551651
1701551652
1701551653
1701551654
1701551655
图4-29
1701551656
1701551657
但假定你的记忆文件没有使用视网膜参考框架,而使用的是与物体本身校准的一个框架。你对箱子的记忆会是“一个长方形的厚板,有一个与厚板边缘平行且在厚板顶端的把手”。“厚板顶端的”部分意味着你记着那部分相对于物体本身的位置,而不是相对于视域的位置。然后,当你看到一个不认识的物体时,你的视觉系统会自动在上面校准一个三维参考框架,就像在阿滕尼夫的正方形和三角形合唱团式排列中所做的一样。现在当你看到的与你所记得的匹配一致时,这两个就符合了,无论箱子的方向如何。你认出了你的箱子(见图4-30)。
1701551658
1701551659
1701551660
1701551661
1701551662
图4-30
1701551663
1701551664
简而言之,这是马尔如何解释形状识别的。他的核心想法是,形状记忆不是一个二维半草图的拷贝,而是以一种与之有两方面不同的格式加以储存的。首先,坐标系统以物体为中心——而不是像在二维半草图中一样,以观看者为中心。要识别一个物体,大脑要根据它的延长线和对称轴校准一个参考框架,并测量在这个参考框架中那部分的位置和角度。只有那时,视觉和记忆才得以匹配。第二处不同是,匹配者并不是将视觉和记忆一个像素一个像素地比较,就好像将一个拼图片放到一个缝隙中一样。如果那样的话,本该匹配的形状仍旧可能匹配不上。真正的物体有凹痕和摆动,而且有着不同的风格和模式。任何两个箱子的大小都不会完全相同,有的是圆角,有的是扁平把手或细长把手。所以要匹配的形状表征不应当是死板地记录下物体表面的每一个起伏。它应当归于较宽大的类别如“厚板”和“U形的东西”。附属件也不能确切到毫米,而应当允许一些和稀泥的情况:不同杯子的把手都在“侧面”,但可能有的杯子把手高些,有的低些。
1701551665
1701551666
心理学家埃尔夫·比耶德曼(Irv Biederman)将马尔的两个观点形象化为一些简单的几何部件,他称其为“几何离子”,类比组成原子的质子和电子。图4-31展示了5个几何离子和它们的一些组合。
1701551667
1701551668
1701551669
1701551670
1701551671
图4-31 几何离子
1701551672
1701551673
比耶德曼一共列出了24个几何离子,包括一个圆锥、一个喇叭筒、一个橄榄球、一根管子、一个立方体和一段通心粉状弯件。从技术上讲,它们都是不同种类的锥体。如果一个冰激凌锥体是由一个其中心沿着一条直线移动的扩展圆扫出的平面,那几何离子就是由其他二维形状在沿着直线或曲线移动时,扩展或收缩而扫出的平面。几何离子用几个附加的关系如“上面”“旁边”“端对端”“端到偏离中心”以及“平行”就可以组合成物体。这些关系由以物体为中心的参考框架来界定(当然不是视域);“上面”意为“主要几何离子的上面”,而不是“凹槽的上面”。所以当物体或观看者移动时,关系仍保持不变。
1701551674
1701551675
几何离子是组合的,就像语法一样。显然我们并不是用语言来向自己描述形状的,但几何离子组合是一种内部语言,是一种心理语言的方言。一些固定词汇的元素组合在一起构成了更大的结构,就像单词构成了词组和句子。句子不是单词的累加,而是要根据它们的句法进行组合;人咬狗不等同于狗咬人。与之类似,物体也不是它的几何离子的累加,而是要依赖于它的空间布局;一个圆筒边上有个弯手就是茶杯,一个圆筒顶上有个弯手就是提桶。就像少量的单词和规则组合成的句子数量是个天文数字一样,少量的几何离子和附件也组合成具有天文数字数量的物体。根据比耶德曼的说法,每24个几何离子分别有着15种大小和构造(有扁平的,有细长的),有81种方式组合它们。这就使得两个几何离子可以构成10497600种物体,3个几何离子可以构成3060亿种物体。从理论上讲,这足以超过我们所知道的几万种形状了。在实践中,仅用3个,甚至常常是两个几何离子,就很容易建成可以即刻识别出的日常物体的模型。
1701551676
1701551677
语言与复杂形状看起来更像是大脑中的邻居。左半脑不仅负责语言功能,还具有识别和想象由布置各部件而界定形状的能力。一位左半脑中风的神经系统患病者报告说:“当我试着想象一棵植物、一种动物或一个物体时,我只能回忆起一部分。我的内部视觉短暂且支离破碎;如果让我想象一头牛的头,我知道它有耳朵和角,但却想象不出它们的具体位置。”相对而言,右半脑负责测量整个形状;它能够轻易判断出一个长方形的高是否比宽更长,或者一个点在一个物体的一厘米之外还是之内。
1701551678
1701551679
几何离子理论的一个优点是,它对二维半草图的要求不是不合理的。将物体雕刻成部件、给部件贴上几何离子的标签,以及确定它们的布置,这些并不是不可克服的问题,而且视觉研究者已开发出了大脑如何来解决这些问题的模型。它的另一个优点是,对物体结构的描述有助于心智来考虑物体,而不仅是为了脱口叫出它们的名字。人们通过分析物体部件的形状和排列方式,从而理解物体运行的方式以及它们的作用。
1701551680
1701551681
几何离子理论认为,心智在最高水平的知觉,是将物体和部件“看”作理想化的几何固体。这就解释了人类视觉审美中一个长期被注意到的、令人好奇的事实。任何曾经参加过人体绘画班或去过裸体海滩的人都会迅速明白,真实的人体不像我们想象中的那样甜美。我们绝大多数人穿上衣服会更好看些。艺术史学家奎恩廷(Quentin Bell)在他的时尚史课程中给出的解释可能就是源自于几何离子理论:
[
上一页 ]
[ :1.701551632e+09 ]
[
下一页 ]